001/* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017 018package org.apache.commons.math3.linear; 019 020import org.apache.commons.math3.Field; 021import org.apache.commons.math3.FieldElement; 022import org.apache.commons.math3.exception.DimensionMismatchException; 023import org.apache.commons.math3.util.MathArrays; 024 025/** 026 * Calculates the LUP-decomposition of a square matrix. 027 * <p>The LUP-decomposition of a matrix A consists of three matrices 028 * L, U and P that satisfy: PA = LU, L is lower triangular, and U is 029 * upper triangular and P is a permutation matrix. All matrices are 030 * m×m.</p> 031 * <p>Since {@link FieldElement field elements} do not provide an ordering 032 * operator, the permutation matrix is computed here only in order to avoid 033 * a zero pivot element, no attempt is done to get the largest pivot 034 * element.</p> 035 * <p>This class is based on the class with similar name from the 036 * <a href="http://math.nist.gov/javanumerics/jama/">JAMA</a> library.</p> 037 * <ul> 038 * <li>a {@link #getP() getP} method has been added,</li> 039 * <li>the {@code det} method has been renamed as {@link #getDeterminant() 040 * getDeterminant},</li> 041 * <li>the {@code getDoublePivot} method has been removed (but the int based 042 * {@link #getPivot() getPivot} method has been kept),</li> 043 * <li>the {@code solve} and {@code isNonSingular} methods have been replaced 044 * by a {@link #getSolver() getSolver} method and the equivalent methods 045 * provided by the returned {@link DecompositionSolver}.</li> 046 * </ul> 047 * 048 * @param <T> the type of the field elements 049 * @see <a href="http://mathworld.wolfram.com/LUDecomposition.html">MathWorld</a> 050 * @see <a href="http://en.wikipedia.org/wiki/LU_decomposition">Wikipedia</a> 051 * @since 2.0 (changed to concrete class in 3.0) 052 */ 053public class FieldLUDecomposition<T extends FieldElement<T>> { 054 055 /** Field to which the elements belong. */ 056 private final Field<T> field; 057 058 /** Entries of LU decomposition. */ 059 private T[][] lu; 060 061 /** Pivot permutation associated with LU decomposition. */ 062 private int[] pivot; 063 064 /** Parity of the permutation associated with the LU decomposition. */ 065 private boolean even; 066 067 /** Singularity indicator. */ 068 private boolean singular; 069 070 /** Cached value of L. */ 071 private FieldMatrix<T> cachedL; 072 073 /** Cached value of U. */ 074 private FieldMatrix<T> cachedU; 075 076 /** Cached value of P. */ 077 private FieldMatrix<T> cachedP; 078 079 /** 080 * Calculates the LU-decomposition of the given matrix. 081 * @param matrix The matrix to decompose. 082 * @throws NonSquareMatrixException if matrix is not square 083 */ 084 public FieldLUDecomposition(FieldMatrix<T> matrix) { 085 if (!matrix.isSquare()) { 086 throw new NonSquareMatrixException(matrix.getRowDimension(), 087 matrix.getColumnDimension()); 088 } 089 090 final int m = matrix.getColumnDimension(); 091 field = matrix.getField(); 092 lu = matrix.getData(); 093 pivot = new int[m]; 094 cachedL = null; 095 cachedU = null; 096 cachedP = null; 097 098 // Initialize permutation array and parity 099 for (int row = 0; row < m; row++) { 100 pivot[row] = row; 101 } 102 even = true; 103 singular = false; 104 105 // Loop over columns 106 for (int col = 0; col < m; col++) { 107 108 T sum = field.getZero(); 109 110 // upper 111 for (int row = 0; row < col; row++) { 112 final T[] luRow = lu[row]; 113 sum = luRow[col]; 114 for (int i = 0; i < row; i++) { 115 sum = sum.subtract(luRow[i].multiply(lu[i][col])); 116 } 117 luRow[col] = sum; 118 } 119 120 // lower 121 int nonZero = col; // permutation row 122 for (int row = col; row < m; row++) { 123 final T[] luRow = lu[row]; 124 sum = luRow[col]; 125 for (int i = 0; i < col; i++) { 126 sum = sum.subtract(luRow[i].multiply(lu[i][col])); 127 } 128 luRow[col] = sum; 129 130 if (lu[nonZero][col].equals(field.getZero())) { 131 // try to select a better permutation choice 132 ++nonZero; 133 } 134 } 135 136 // Singularity check 137 if (nonZero >= m) { 138 singular = true; 139 return; 140 } 141 142 // Pivot if necessary 143 if (nonZero != col) { 144 T tmp = field.getZero(); 145 for (int i = 0; i < m; i++) { 146 tmp = lu[nonZero][i]; 147 lu[nonZero][i] = lu[col][i]; 148 lu[col][i] = tmp; 149 } 150 int temp = pivot[nonZero]; 151 pivot[nonZero] = pivot[col]; 152 pivot[col] = temp; 153 even = !even; 154 } 155 156 // Divide the lower elements by the "winning" diagonal elt. 157 final T luDiag = lu[col][col]; 158 for (int row = col + 1; row < m; row++) { 159 final T[] luRow = lu[row]; 160 luRow[col] = luRow[col].divide(luDiag); 161 } 162 } 163 164 } 165 166 /** 167 * Returns the matrix L of the decomposition. 168 * <p>L is a lower-triangular matrix</p> 169 * @return the L matrix (or null if decomposed matrix is singular) 170 */ 171 public FieldMatrix<T> getL() { 172 if ((cachedL == null) && !singular) { 173 final int m = pivot.length; 174 cachedL = new Array2DRowFieldMatrix<T>(field, m, m); 175 for (int i = 0; i < m; ++i) { 176 final T[] luI = lu[i]; 177 for (int j = 0; j < i; ++j) { 178 cachedL.setEntry(i, j, luI[j]); 179 } 180 cachedL.setEntry(i, i, field.getOne()); 181 } 182 } 183 return cachedL; 184 } 185 186 /** 187 * Returns the matrix U of the decomposition. 188 * <p>U is an upper-triangular matrix</p> 189 * @return the U matrix (or null if decomposed matrix is singular) 190 */ 191 public FieldMatrix<T> getU() { 192 if ((cachedU == null) && !singular) { 193 final int m = pivot.length; 194 cachedU = new Array2DRowFieldMatrix<T>(field, m, m); 195 for (int i = 0; i < m; ++i) { 196 final T[] luI = lu[i]; 197 for (int j = i; j < m; ++j) { 198 cachedU.setEntry(i, j, luI[j]); 199 } 200 } 201 } 202 return cachedU; 203 } 204 205 /** 206 * Returns the P rows permutation matrix. 207 * <p>P is a sparse matrix with exactly one element set to 1.0 in 208 * each row and each column, all other elements being set to 0.0.</p> 209 * <p>The positions of the 1 elements are given by the {@link #getPivot() 210 * pivot permutation vector}.</p> 211 * @return the P rows permutation matrix (or null if decomposed matrix is singular) 212 * @see #getPivot() 213 */ 214 public FieldMatrix<T> getP() { 215 if ((cachedP == null) && !singular) { 216 final int m = pivot.length; 217 cachedP = new Array2DRowFieldMatrix<T>(field, m, m); 218 for (int i = 0; i < m; ++i) { 219 cachedP.setEntry(i, pivot[i], field.getOne()); 220 } 221 } 222 return cachedP; 223 } 224 225 /** 226 * Returns the pivot permutation vector. 227 * @return the pivot permutation vector 228 * @see #getP() 229 */ 230 public int[] getPivot() { 231 return pivot.clone(); 232 } 233 234 /** 235 * Return the determinant of the matrix. 236 * @return determinant of the matrix 237 */ 238 public T getDeterminant() { 239 if (singular) { 240 return field.getZero(); 241 } else { 242 final int m = pivot.length; 243 T determinant = even ? field.getOne() : field.getZero().subtract(field.getOne()); 244 for (int i = 0; i < m; i++) { 245 determinant = determinant.multiply(lu[i][i]); 246 } 247 return determinant; 248 } 249 } 250 251 /** 252 * Get a solver for finding the A × X = B solution in exact linear sense. 253 * @return a solver 254 */ 255 public FieldDecompositionSolver<T> getSolver() { 256 return new Solver<T>(field, lu, pivot, singular); 257 } 258 259 /** Specialized solver. 260 * @param <T> the type of the field elements 261 */ 262 private static class Solver<T extends FieldElement<T>> implements FieldDecompositionSolver<T> { 263 264 /** Field to which the elements belong. */ 265 private final Field<T> field; 266 267 /** Entries of LU decomposition. */ 268 private final T[][] lu; 269 270 /** Pivot permutation associated with LU decomposition. */ 271 private final int[] pivot; 272 273 /** Singularity indicator. */ 274 private final boolean singular; 275 276 /** 277 * Build a solver from decomposed matrix. 278 * @param field field to which the matrix elements belong 279 * @param lu entries of LU decomposition 280 * @param pivot pivot permutation associated with LU decomposition 281 * @param singular singularity indicator 282 */ 283 private Solver(final Field<T> field, final T[][] lu, 284 final int[] pivot, final boolean singular) { 285 this.field = field; 286 this.lu = lu; 287 this.pivot = pivot; 288 this.singular = singular; 289 } 290 291 /** {@inheritDoc} */ 292 public boolean isNonSingular() { 293 return !singular; 294 } 295 296 /** {@inheritDoc} */ 297 public FieldVector<T> solve(FieldVector<T> b) { 298 try { 299 return solve((ArrayFieldVector<T>) b); 300 } catch (ClassCastException cce) { 301 302 final int m = pivot.length; 303 if (b.getDimension() != m) { 304 throw new DimensionMismatchException(b.getDimension(), m); 305 } 306 if (singular) { 307 throw new SingularMatrixException(); 308 } 309 310 // Apply permutations to b 311 final T[] bp = MathArrays.buildArray(field, m); 312 for (int row = 0; row < m; row++) { 313 bp[row] = b.getEntry(pivot[row]); 314 } 315 316 // Solve LY = b 317 for (int col = 0; col < m; col++) { 318 final T bpCol = bp[col]; 319 for (int i = col + 1; i < m; i++) { 320 bp[i] = bp[i].subtract(bpCol.multiply(lu[i][col])); 321 } 322 } 323 324 // Solve UX = Y 325 for (int col = m - 1; col >= 0; col--) { 326 bp[col] = bp[col].divide(lu[col][col]); 327 final T bpCol = bp[col]; 328 for (int i = 0; i < col; i++) { 329 bp[i] = bp[i].subtract(bpCol.multiply(lu[i][col])); 330 } 331 } 332 333 return new ArrayFieldVector<T>(field, bp, false); 334 335 } 336 } 337 338 /** Solve the linear equation A × X = B. 339 * <p>The A matrix is implicit here. It is </p> 340 * @param b right-hand side of the equation A × X = B 341 * @return a vector X such that A × X = B 342 * @throws DimensionMismatchException if the matrices dimensions do not match. 343 * @throws SingularMatrixException if the decomposed matrix is singular. 344 */ 345 public ArrayFieldVector<T> solve(ArrayFieldVector<T> b) { 346 final int m = pivot.length; 347 final int length = b.getDimension(); 348 if (length != m) { 349 throw new DimensionMismatchException(length, m); 350 } 351 if (singular) { 352 throw new SingularMatrixException(); 353 } 354 355 // Apply permutations to b 356 final T[] bp = MathArrays.buildArray(field, m); 357 for (int row = 0; row < m; row++) { 358 bp[row] = b.getEntry(pivot[row]); 359 } 360 361 // Solve LY = b 362 for (int col = 0; col < m; col++) { 363 final T bpCol = bp[col]; 364 for (int i = col + 1; i < m; i++) { 365 bp[i] = bp[i].subtract(bpCol.multiply(lu[i][col])); 366 } 367 } 368 369 // Solve UX = Y 370 for (int col = m - 1; col >= 0; col--) { 371 bp[col] = bp[col].divide(lu[col][col]); 372 final T bpCol = bp[col]; 373 for (int i = 0; i < col; i++) { 374 bp[i] = bp[i].subtract(bpCol.multiply(lu[i][col])); 375 } 376 } 377 378 return new ArrayFieldVector<T>(bp, false); 379 } 380 381 /** {@inheritDoc} */ 382 public FieldMatrix<T> solve(FieldMatrix<T> b) { 383 final int m = pivot.length; 384 if (b.getRowDimension() != m) { 385 throw new DimensionMismatchException(b.getRowDimension(), m); 386 } 387 if (singular) { 388 throw new SingularMatrixException(); 389 } 390 391 final int nColB = b.getColumnDimension(); 392 393 // Apply permutations to b 394 final T[][] bp = MathArrays.buildArray(field, m, nColB); 395 for (int row = 0; row < m; row++) { 396 final T[] bpRow = bp[row]; 397 final int pRow = pivot[row]; 398 for (int col = 0; col < nColB; col++) { 399 bpRow[col] = b.getEntry(pRow, col); 400 } 401 } 402 403 // Solve LY = b 404 for (int col = 0; col < m; col++) { 405 final T[] bpCol = bp[col]; 406 for (int i = col + 1; i < m; i++) { 407 final T[] bpI = bp[i]; 408 final T luICol = lu[i][col]; 409 for (int j = 0; j < nColB; j++) { 410 bpI[j] = bpI[j].subtract(bpCol[j].multiply(luICol)); 411 } 412 } 413 } 414 415 // Solve UX = Y 416 for (int col = m - 1; col >= 0; col--) { 417 final T[] bpCol = bp[col]; 418 final T luDiag = lu[col][col]; 419 for (int j = 0; j < nColB; j++) { 420 bpCol[j] = bpCol[j].divide(luDiag); 421 } 422 for (int i = 0; i < col; i++) { 423 final T[] bpI = bp[i]; 424 final T luICol = lu[i][col]; 425 for (int j = 0; j < nColB; j++) { 426 bpI[j] = bpI[j].subtract(bpCol[j].multiply(luICol)); 427 } 428 } 429 } 430 431 return new Array2DRowFieldMatrix<T>(field, bp, false); 432 433 } 434 435 /** {@inheritDoc} */ 436 public FieldMatrix<T> getInverse() { 437 final int m = pivot.length; 438 final T one = field.getOne(); 439 FieldMatrix<T> identity = new Array2DRowFieldMatrix<T>(field, m, m); 440 for (int i = 0; i < m; ++i) { 441 identity.setEntry(i, i, one); 442 } 443 return solve(identity); 444 } 445 } 446}