001/*
002 * Licensed to the Apache Software Foundation (ASF) under one or more
003 * contributor license agreements.  See the NOTICE file distributed with
004 * this work for additional information regarding copyright ownership.
005 * The ASF licenses this file to You under the Apache License, Version 2.0
006 * (the "License"); you may not use this file except in compliance with
007 * the License.  You may obtain a copy of the License at
008 *
009 *      http://www.apache.org/licenses/LICENSE-2.0
010 *
011 * Unless required by applicable law or agreed to in writing, software
012 * distributed under the License is distributed on an "AS IS" BASIS,
013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
014 * See the License for the specific language governing permissions and
015 * limitations under the License.
016 */
017
018package org.apache.commons.math3.ml.neuralnet.sofm;
019
020import java.util.Collection;
021import java.util.HashSet;
022import java.util.concurrent.atomic.AtomicLong;
023
024import org.apache.commons.math3.analysis.function.Gaussian;
025import org.apache.commons.math3.linear.ArrayRealVector;
026import org.apache.commons.math3.ml.distance.DistanceMeasure;
027import org.apache.commons.math3.ml.neuralnet.MapUtils;
028import org.apache.commons.math3.ml.neuralnet.Network;
029import org.apache.commons.math3.ml.neuralnet.Neuron;
030import org.apache.commons.math3.ml.neuralnet.UpdateAction;
031
032/**
033 * Update formula for <a href="http://en.wikipedia.org/wiki/Kohonen">
034 * Kohonen's Self-Organizing Map</a>.
035 * <br/>
036 * The {@link #update(Network,double[]) update} method modifies the
037 * features {@code w} of the "winning" neuron and its neighbours
038 * according to the following rule:
039 * <code>
040 *  w<sub>new</sub> = w<sub>old</sub> + &alpha; e<sup>(-d / &sigma;)</sup> * (sample - w<sub>old</sub>)
041 * </code>
042 * where
043 * <ul>
044 *  <li>&alpha; is the current <em>learning rate</em>, </li>
045 *  <li>&sigma; is the current <em>neighbourhood size</em>, and</li>
046 *  <li>{@code d} is the number of links to traverse in order to reach
047 *   the neuron from the winning neuron.</li>
048 * </ul>
049 * <br/>
050 * This class is thread-safe as long as the arguments passed to the
051 * {@link #KohonenUpdateAction(DistanceMeasure,LearningFactorFunction,
052 * NeighbourhoodSizeFunction) constructor} are instances of thread-safe
053 * classes.
054 * <br/>
055 * Each call to the {@link #update(Network,double[]) update} method
056 * will increment the internal counter used to compute the current
057 * values for
058 * <ul>
059 *  <li>the <em>learning rate</em>, and</li>
060 *  <li>the <em>neighbourhood size</em>.</li>
061 * </ul>
062 * Consequently, the function instances that compute those values (passed
063 * to the constructor of this class) must take into account whether this
064 * class's instance will be shared by multiple threads, as this will impact
065 * the training process.
066 *
067 * @since 3.3
068 */
069public class KohonenUpdateAction implements UpdateAction {
070    /** Distance function. */
071    private final DistanceMeasure distance;
072    /** Learning factor update function. */
073    private final LearningFactorFunction learningFactor;
074    /** Neighbourhood size update function. */
075    private final NeighbourhoodSizeFunction neighbourhoodSize;
076    /** Number of calls to {@link #update(Network,double[])}. */
077    private final AtomicLong numberOfCalls = new AtomicLong(0);
078
079    /**
080     * @param distance Distance function.
081     * @param learningFactor Learning factor update function.
082     * @param neighbourhoodSize Neighbourhood size update function.
083     */
084    public KohonenUpdateAction(DistanceMeasure distance,
085                               LearningFactorFunction learningFactor,
086                               NeighbourhoodSizeFunction neighbourhoodSize) {
087        this.distance = distance;
088        this.learningFactor = learningFactor;
089        this.neighbourhoodSize = neighbourhoodSize;
090    }
091
092    /**
093     * {@inheritDoc}
094     */
095    public void update(Network net,
096                       double[] features) {
097        final long numCalls = numberOfCalls.incrementAndGet() - 1;
098        final double currentLearning = learningFactor.value(numCalls);
099        final Neuron best = findAndUpdateBestNeuron(net,
100                                                    features,
101                                                    currentLearning);
102
103        final int currentNeighbourhood = neighbourhoodSize.value(numCalls);
104        // The farther away the neighbour is from the winning neuron, the
105        // smaller the learning rate will become.
106        final Gaussian neighbourhoodDecay
107            = new Gaussian(currentLearning,
108                           0,
109                           currentNeighbourhood);
110
111        if (currentNeighbourhood > 0) {
112            // Initial set of neurons only contains the winning neuron.
113            Collection<Neuron> neighbours = new HashSet<Neuron>();
114            neighbours.add(best);
115            // Winning neuron must be excluded from the neighbours.
116            final HashSet<Neuron> exclude = new HashSet<Neuron>();
117            exclude.add(best);
118
119            int radius = 1;
120            do {
121                // Retrieve immediate neighbours of the current set of neurons.
122                neighbours = net.getNeighbours(neighbours, exclude);
123
124                // Update all the neighbours.
125                for (Neuron n : neighbours) {
126                    updateNeighbouringNeuron(n, features, neighbourhoodDecay.value(radius));
127                }
128
129                // Add the neighbours to the exclude list so that they will
130                // not be update more than once per training step.
131                exclude.addAll(neighbours);
132                ++radius;
133            } while (radius <= currentNeighbourhood);
134        }
135    }
136
137    /**
138     * Retrieves the number of calls to the {@link #update(Network,double[]) update}
139     * method.
140     *
141     * @return the current number of calls.
142     */
143    public long getNumberOfCalls() {
144        return numberOfCalls.get();
145    }
146
147    /**
148     * Tries to update a neuron.
149     *
150     * @param n Neuron to be updated.
151     * @param features Training data.
152     * @param learningRate Learning factor.
153     * @return {@code true} if the update succeeded, {@code true} if a
154     * concurrent update has been detected.
155     */
156    private boolean attemptNeuronUpdate(Neuron n,
157                                        double[] features,
158                                        double learningRate) {
159        final double[] expect = n.getFeatures();
160        final double[] update = computeFeatures(expect,
161                                                features,
162                                                learningRate);
163
164        return n.compareAndSetFeatures(expect, update);
165    }
166
167    /**
168     * Atomically updates the given neuron.
169     *
170     * @param n Neuron to be updated.
171     * @param features Training data.
172     * @param learningRate Learning factor.
173     */
174    private void updateNeighbouringNeuron(Neuron n,
175                                          double[] features,
176                                          double learningRate) {
177        while (true) {
178            if (attemptNeuronUpdate(n, features, learningRate)) {
179                break;
180            }
181        }
182    }
183
184    /**
185     * Searches for the neuron whose features are closest to the given
186     * sample, and atomically updates its features.
187     *
188     * @param net Network.
189     * @param features Sample data.
190     * @param learningRate Current learning factor.
191     * @return the winning neuron.
192     */
193    private Neuron findAndUpdateBestNeuron(Network net,
194                                           double[] features,
195                                           double learningRate) {
196        while (true) {
197            final Neuron best = MapUtils.findBest(features, net, distance);
198
199            if (attemptNeuronUpdate(best, features, learningRate)) {
200                return best;
201            }
202
203            // If another thread modified the state of the winning neuron,
204            // it may not be the best match anymore for the given training
205            // sample: Hence, the winner search is performed again.
206        }
207    }
208
209    /**
210     * Computes the new value of the features set.
211     *
212     * @param current Current values of the features.
213     * @param sample Training data.
214     * @param learningRate Learning factor.
215     * @return the new values for the features.
216     */
217    private double[] computeFeatures(double[] current,
218                                     double[] sample,
219                                     double learningRate) {
220        final ArrayRealVector c = new ArrayRealVector(current, false);
221        final ArrayRealVector s = new ArrayRealVector(sample, false);
222        // c + learningRate * (s - c)
223        return s.subtract(c).mapMultiplyToSelf(learningRate).add(c).toArray();
224    }
225}