001/*
002 * Licensed to the Apache Software Foundation (ASF) under one or more
003 * contributor license agreements.  See the NOTICE file distributed with
004 * this work for additional information regarding copyright ownership.
005 * The ASF licenses this file to You under the Apache License, Version 2.0
006 * (the "License"); you may not use this file except in compliance with
007 * the License.  You may obtain a copy of the License at
008 *
009 *      http://www.apache.org/licenses/LICENSE-2.0
010 *
011 * Unless required by applicable law or agreed to in writing, software
012 * distributed under the License is distributed on an "AS IS" BASIS,
013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
014 * See the License for the specific language governing permissions and
015 * limitations under the License.
016 */
017
018package org.apache.commons.math3.ode;
019
020import java.util.ArrayList;
021import java.util.List;
022
023import org.apache.commons.math3.RealFieldElement;
024import org.apache.commons.math3.exception.DimensionMismatchException;
025import org.apache.commons.math3.exception.MathIllegalArgumentException;
026import org.apache.commons.math3.exception.MaxCountExceededException;
027import org.apache.commons.math3.exception.util.LocalizedFormats;
028import org.apache.commons.math3.ode.sampling.FieldStepHandler;
029import org.apache.commons.math3.ode.sampling.FieldStepInterpolator;
030import org.apache.commons.math3.util.FastMath;
031
032/**
033 * This class stores all information provided by an ODE integrator
034 * during the integration process and build a continuous model of the
035 * solution from this.
036 *
037 * <p>This class act as a step handler from the integrator point of
038 * view. It is called iteratively during the integration process and
039 * stores a copy of all steps information in a sorted collection for
040 * later use. Once the integration process is over, the user can use
041 * the {@link #getInterpolatedState(RealFieldElement) getInterpolatedState}
042 * method to retrieve this information at any time. It is important to wait
043 * for the integration to be over before attempting to call {@link
044 * #getInterpolatedState(RealFieldElement)} because some internal
045 * variables are set only once the last step has been handled.</p>
046 *
047 * <p>This is useful for example if the main loop of the user
048 * application should remain independent from the integration process
049 * or if one needs to mimic the behaviour of an analytical model
050 * despite a numerical model is used (i.e. one needs the ability to
051 * get the model value at any time or to navigate through the
052 * data).</p>
053 *
054 * <p>If problem modeling is done with several separate
055 * integration phases for contiguous intervals, the same
056 * ContinuousOutputModel can be used as step handler for all
057 * integration phases as long as they are performed in order and in
058 * the same direction. As an example, one can extrapolate the
059 * trajectory of a satellite with one model (i.e. one set of
060 * differential equations) up to the beginning of a maneuver, use
061 * another more complex model including thrusters modeling and
062 * accurate attitude control during the maneuver, and revert to the
063 * first model after the end of the maneuver. If the same continuous
064 * output model handles the steps of all integration phases, the user
065 * do not need to bother when the maneuver begins or ends, he has all
066 * the data available in a transparent manner.</p>
067 *
068 * <p>One should be aware that the amount of data stored in a
069 * ContinuousOutputFieldModel instance can be important if the state vector
070 * is large, if the integration interval is long or if the steps are
071 * small (which can result from small tolerance settings in {@link
072 * org.apache.commons.math3.ode.nonstiff.AdaptiveStepsizeFieldIntegrator adaptive
073 * step size integrators}).</p>
074 *
075 * @see FieldStepHandler
076 * @see FieldStepInterpolator
077 * @param <T> the type of the field elements
078 * @since 3.6
079 */
080
081public class ContinuousOutputFieldModel<T extends RealFieldElement<T>>
082    implements FieldStepHandler<T> {
083
084    /** Initial integration time. */
085    private T initialTime;
086
087    /** Final integration time. */
088    private T finalTime;
089
090    /** Integration direction indicator. */
091    private boolean forward;
092
093    /** Current interpolator index. */
094    private int index;
095
096    /** Steps table. */
097    private List<FieldStepInterpolator<T>> steps;
098
099    /** Simple constructor.
100     * Build an empty continuous output model.
101     */
102    public ContinuousOutputFieldModel() {
103        steps       = new ArrayList<FieldStepInterpolator<T>>();
104        initialTime = null;
105        finalTime   = null;
106        forward     = true;
107        index       = 0;
108    }
109
110    /** Append another model at the end of the instance.
111     * @param model model to add at the end of the instance
112     * @exception MathIllegalArgumentException if the model to append is not
113     * compatible with the instance (dimension of the state vector,
114     * propagation direction, hole between the dates)
115     * @exception DimensionMismatchException if the dimensions of the states or
116     * the number of secondary states do not match
117     * @exception MaxCountExceededException if the number of functions evaluations is exceeded
118     * during step finalization
119     */
120    public void append(final ContinuousOutputFieldModel<T> model)
121        throws MathIllegalArgumentException, MaxCountExceededException {
122
123        if (model.steps.size() == 0) {
124            return;
125        }
126
127        if (steps.size() == 0) {
128            initialTime = model.initialTime;
129            forward     = model.forward;
130        } else {
131
132            // safety checks
133            final FieldODEStateAndDerivative<T> s1 = steps.get(0).getPreviousState();
134            final FieldODEStateAndDerivative<T> s2 = model.steps.get(0).getPreviousState();
135            checkDimensionsEquality(s1.getStateDimension(), s2.getStateDimension());
136            checkDimensionsEquality(s1.getNumberOfSecondaryStates(), s2.getNumberOfSecondaryStates());
137            for (int i = 0; i < s1.getNumberOfSecondaryStates(); ++i) {
138                checkDimensionsEquality(s1.getSecondaryStateDimension(i), s2.getSecondaryStateDimension(i));
139            }
140
141            if (forward ^ model.forward) {
142                throw new MathIllegalArgumentException(LocalizedFormats.PROPAGATION_DIRECTION_MISMATCH);
143            }
144
145            final FieldStepInterpolator<T> lastInterpolator = steps.get(index);
146            final T current  = lastInterpolator.getCurrentState().getTime();
147            final T previous = lastInterpolator.getPreviousState().getTime();
148            final T step = current.subtract(previous);
149            final T gap = model.getInitialTime().subtract(current);
150            if (gap.abs().subtract(step.abs().multiply(1.0e-3)).getReal() > 0) {
151                throw new MathIllegalArgumentException(LocalizedFormats.HOLE_BETWEEN_MODELS_TIME_RANGES,
152                                                       gap.abs().getReal());
153            }
154
155        }
156
157        for (FieldStepInterpolator<T> interpolator : model.steps) {
158            steps.add(interpolator);
159        }
160
161        index = steps.size() - 1;
162        finalTime = (steps.get(index)).getCurrentState().getTime();
163
164    }
165
166    /** Check dimensions equality.
167     * @param d1 first dimension
168     * @param d2 second dimansion
169     * @exception DimensionMismatchException if dimensions do not match
170     */
171    private void checkDimensionsEquality(final int d1, final int d2)
172        throws DimensionMismatchException {
173        if (d1 != d2) {
174            throw new DimensionMismatchException(d2, d1);
175        }
176    }
177
178    /** {@inheritDoc} */
179    public void init(final FieldODEStateAndDerivative<T> initialState, final T t) {
180        initialTime = initialState.getTime();
181        finalTime   = t;
182        forward     = true;
183        index       = 0;
184        steps.clear();
185    }
186
187    /** Handle the last accepted step.
188     * A copy of the information provided by the last step is stored in
189     * the instance for later use.
190     * @param interpolator interpolator for the last accepted step.
191     * @param isLast true if the step is the last one
192     * @exception MaxCountExceededException if the number of functions evaluations is exceeded
193     * during step finalization
194     */
195    public void handleStep(final FieldStepInterpolator<T> interpolator, final boolean isLast)
196        throws MaxCountExceededException {
197
198        if (steps.size() == 0) {
199            initialTime = interpolator.getPreviousState().getTime();
200            forward     = interpolator.isForward();
201        }
202
203        steps.add(interpolator);
204
205        if (isLast) {
206            finalTime = interpolator.getCurrentState().getTime();
207            index     = steps.size() - 1;
208        }
209
210    }
211
212    /**
213     * Get the initial integration time.
214     * @return initial integration time
215     */
216    public T getInitialTime() {
217        return initialTime;
218    }
219
220    /**
221     * Get the final integration time.
222     * @return final integration time
223     */
224    public T getFinalTime() {
225        return finalTime;
226    }
227
228    /**
229     * Get the state at interpolated time.
230     * @param time time of the interpolated point
231     * @return state at interpolated time
232     */
233    public FieldODEStateAndDerivative<T> getInterpolatedState(final T time) {
234
235        // initialize the search with the complete steps table
236        int iMin = 0;
237        final FieldStepInterpolator<T> sMin = steps.get(iMin);
238        T tMin = sMin.getPreviousState().getTime().add(sMin.getCurrentState().getTime()).multiply(0.5);
239
240        int iMax = steps.size() - 1;
241        final FieldStepInterpolator<T> sMax = steps.get(iMax);
242        T tMax = sMax.getPreviousState().getTime().add(sMax.getCurrentState().getTime()).multiply(0.5);
243
244        // handle points outside of the integration interval
245        // or in the first and last step
246        if (locatePoint(time, sMin) <= 0) {
247            index = iMin;
248            return sMin.getInterpolatedState(time);
249        }
250        if (locatePoint(time, sMax) >= 0) {
251            index = iMax;
252            return sMax.getInterpolatedState(time);
253        }
254
255        // reduction of the table slice size
256        while (iMax - iMin > 5) {
257
258            // use the last estimated index as the splitting index
259            final FieldStepInterpolator<T> si = steps.get(index);
260            final int location = locatePoint(time, si);
261            if (location < 0) {
262                iMax = index;
263                tMax = si.getPreviousState().getTime().add(si.getCurrentState().getTime()).multiply(0.5);
264            } else if (location > 0) {
265                iMin = index;
266                tMin = si.getPreviousState().getTime().add(si.getCurrentState().getTime()).multiply(0.5);
267            } else {
268                // we have found the target step, no need to continue searching
269                return si.getInterpolatedState(time);
270            }
271
272            // compute a new estimate of the index in the reduced table slice
273            final int iMed = (iMin + iMax) / 2;
274            final FieldStepInterpolator<T> sMed = steps.get(iMed);
275            final T tMed = sMed.getPreviousState().getTime().add(sMed.getCurrentState().getTime()).multiply(0.5);
276
277            if (tMed.subtract(tMin).abs().subtract(1.0e-6).getReal() < 0 ||
278                tMax.subtract(tMed).abs().subtract(1.0e-6).getReal() < 0) {
279                // too close to the bounds, we estimate using a simple dichotomy
280                index = iMed;
281            } else {
282                // estimate the index using a reverse quadratic polynomial
283                // (reverse means we have i = P(t), thus allowing to simply
284                // compute index = P(time) rather than solving a quadratic equation)
285                final T d12 = tMax.subtract(tMed);
286                final T d23 = tMed.subtract(tMin);
287                final T d13 = tMax.subtract(tMin);
288                final T dt1 = time.subtract(tMax);
289                final T dt2 = time.subtract(tMed);
290                final T dt3 = time.subtract(tMin);
291                final T iLagrange =           dt2.multiply(dt3).multiply(d23).multiply(iMax).
292                                     subtract(dt1.multiply(dt3).multiply(d13).multiply(iMed)).
293                                     add(     dt1.multiply(dt2).multiply(d12).multiply(iMin)).
294                                     divide(d12.multiply(d23).multiply(d13));
295                index = (int) FastMath.rint(iLagrange.getReal());
296            }
297
298            // force the next size reduction to be at least one tenth
299            final int low  = FastMath.max(iMin + 1, (9 * iMin + iMax) / 10);
300            final int high = FastMath.min(iMax - 1, (iMin + 9 * iMax) / 10);
301            if (index < low) {
302                index = low;
303            } else if (index > high) {
304                index = high;
305            }
306
307        }
308
309        // now the table slice is very small, we perform an iterative search
310        index = iMin;
311        while (index <= iMax && locatePoint(time, steps.get(index)) > 0) {
312            ++index;
313        }
314
315        return steps.get(index).getInterpolatedState(time);
316
317    }
318
319    /** Compare a step interval and a double.
320     * @param time point to locate
321     * @param interval step interval
322     * @return -1 if the double is before the interval, 0 if it is in
323     * the interval, and +1 if it is after the interval, according to
324     * the interval direction
325     */
326    private int locatePoint(final T time, final FieldStepInterpolator<T> interval) {
327        if (forward) {
328            if (time.subtract(interval.getPreviousState().getTime()).getReal() < 0) {
329                return -1;
330            } else if (time.subtract(interval.getCurrentState().getTime()).getReal() > 0) {
331                return +1;
332            } else {
333                return 0;
334            }
335        }
336        if (time.subtract(interval.getPreviousState().getTime()).getReal() > 0) {
337            return -1;
338        } else if (time.subtract(interval.getCurrentState().getTime()).getReal() < 0) {
339            return +1;
340        } else {
341            return 0;
342        }
343    }
344
345}