001/*
002 * Licensed to the Apache Software Foundation (ASF) under one or more
003 * contributor license agreements.  See the NOTICE file distributed with
004 * this work for additional information regarding copyright ownership.
005 * The ASF licenses this file to You under the Apache License, Version 2.0
006 * (the "License"); you may not use this file except in compliance with
007 * the License.  You may obtain a copy of the License at
008 *
009 *      http://www.apache.org/licenses/LICENSE-2.0
010 *
011 * Unless required by applicable law or agreed to in writing, software
012 * distributed under the License is distributed on an "AS IS" BASIS,
013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
014 * See the License for the specific language governing permissions and
015 * limitations under the License.
016 */
017
018package org.apache.commons.math3.ode.nonstiff;
019
020import org.apache.commons.math3.util.FastMath;
021
022
023/**
024 * This class implements the Luther sixth order Runge-Kutta
025 * integrator for Ordinary Differential Equations.
026
027 * <p>
028 * This method is described in H. A. Luther 1968 paper <a
029 * href="http://www.ams.org/journals/mcom/1968-22-102/S0025-5718-68-99876-1/S0025-5718-68-99876-1.pdf">
030 * An explicit Sixth-Order Runge-Kutta Formula</a>.
031 * </p>
032
033 * <p>This method is an explicit Runge-Kutta method, its Butcher-array
034 * is the following one :
035 * <pre>
036 *        0   |               0                     0                     0                     0                     0                     0
037 *        1   |               1                     0                     0                     0                     0                     0
038 *       1/2  |              3/8                   1/8                    0                     0                     0                     0
039 *       2/3  |              8/27                  2/27                  8/27                   0                     0                     0
040 *   (7-q)/14 | (  -21 +   9q)/392    (  -56 +   8q)/392    (  336 -  48q)/392    (  -63 +   3q)/392                  0                     0
041 *   (7+q)/14 | (-1155 - 255q)/1960   ( -280 -  40q)/1960   (    0 - 320q)/1960   (   63 + 363q)/1960   ( 2352 + 392q)/1960                 0
042 *        1   | (  330 + 105q)/180    (  120 +   0q)/180    ( -200 + 280q)/180    (  126 - 189q)/180    ( -686 - 126q)/180     ( 490 -  70q)/180
043 *            |--------------------------------------------------------------------------------------------------------------------------------------------------
044 *            |              1/20                   0                   16/45                  0                   49/180                 49/180         1/20
045 * </pre>
046 * where q = &radic;21</p>
047 *
048 * @see EulerIntegrator
049 * @see ClassicalRungeKuttaIntegrator
050 * @see GillIntegrator
051 * @see MidpointIntegrator
052 * @see ThreeEighthesIntegrator
053 * @since 3.3
054 */
055
056public class LutherIntegrator extends RungeKuttaIntegrator {
057
058    /** Square root. */
059    private static final double Q = FastMath.sqrt(21);
060
061    /** Time steps Butcher array. */
062    private static final double[] STATIC_C = {
063        1.0, 1.0 / 2.0, 2.0 / 3.0, (7.0 - Q) / 14.0, (7.0 + Q) / 14.0, 1.0
064    };
065
066    /** Internal weights Butcher array. */
067    private static final double[][] STATIC_A = {
068        {                      1.0        },
069        {                   3.0 /   8.0,                  1.0 /   8.0  },
070        {                   8.0 /   27.0,                 2.0 /   27.0,                  8.0 /   27.0  },
071        { (  -21.0 +   9.0 * Q) /  392.0, ( -56.0 +  8.0 * Q) /  392.0, ( 336.0 -  48.0 * Q) /  392.0, (-63.0 +   3.0 * Q) /  392.0 },
072        { (-1155.0 - 255.0 * Q) / 1960.0, (-280.0 - 40.0 * Q) / 1960.0, (   0.0 - 320.0 * Q) / 1960.0, ( 63.0 + 363.0 * Q) / 1960.0,   (2352.0 + 392.0 * Q) / 1960.0 },
073        { (  330.0 + 105.0 * Q) /  180.0, ( 120.0 +  0.0 * Q) /  180.0, (-200.0 + 280.0 * Q) /  180.0, (126.0 - 189.0 * Q) /  180.0,   (-686.0 - 126.0 * Q) /  180.0,   (490.0 -  70.0 * Q) / 180.0 }
074    };
075
076    /** Propagation weights Butcher array. */
077    private static final double[] STATIC_B = {
078        1.0 / 20.0, 0, 16.0 / 45.0, 0, 49.0 / 180.0, 49.0 / 180.0, 1.0 / 20.0
079    };
080
081    /** Simple constructor.
082     * Build a fourth-order Luther integrator with the given step.
083     * @param step integration step
084     */
085    public LutherIntegrator(final double step) {
086        super("Luther", STATIC_C, STATIC_A, STATIC_B, new LutherStepInterpolator(), step);
087    }
088
089}