001/* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017 018package org.apache.commons.math3.ode.sampling; 019 020import org.apache.commons.math3.exception.MaxCountExceededException; 021import org.apache.commons.math3.util.FastMath; 022import org.apache.commons.math3.util.Precision; 023 024/** 025 * This class wraps an object implementing {@link FixedStepHandler} 026 * into a {@link StepHandler}. 027 028 * <p>This wrapper allows to use fixed step handlers with general 029 * integrators which cannot guaranty their integration steps will 030 * remain constant and therefore only accept general step 031 * handlers.</p> 032 * 033 * <p>The stepsize used is selected at construction time. The {@link 034 * FixedStepHandler#handleStep handleStep} method of the underlying 035 * {@link FixedStepHandler} object is called at normalized times. The 036 * normalized times can be influenced by the {@link StepNormalizerMode} and 037 * {@link StepNormalizerBounds}.</p> 038 * 039 * <p>There is no constraint on the integrator, it can use any time step 040 * it needs (time steps longer or shorter than the fixed time step and 041 * non-integer ratios are all allowed).</p> 042 * 043 * <p> 044 * <table border="1" align="center"> 045 * <tr BGCOLOR="#CCCCFF"><td colspan=6><font size="+2">Examples (step size = 0.5)</font></td></tr> 046 * <tr BGCOLOR="#EEEEFF"><font size="+1"><td>Start time</td><td>End time</td> 047 * <td>Direction</td><td>{@link StepNormalizerMode Mode}</td> 048 * <td>{@link StepNormalizerBounds Bounds}</td><td>Output</td></font></tr> 049 * <tr><td>0.3</td><td>3.1</td><td>forward</td><td>{@link StepNormalizerMode#INCREMENT INCREMENT}</td><td>{@link StepNormalizerBounds#NEITHER NEITHER}</td><td>0.8, 1.3, 1.8, 2.3, 2.8</td></tr> 050 * <tr><td>0.3</td><td>3.1</td><td>forward</td><td>{@link StepNormalizerMode#INCREMENT INCREMENT}</td><td>{@link StepNormalizerBounds#FIRST FIRST}</td><td>0.3, 0.8, 1.3, 1.8, 2.3, 2.8</td></tr> 051 * <tr><td>0.3</td><td>3.1</td><td>forward</td><td>{@link StepNormalizerMode#INCREMENT INCREMENT}</td><td>{@link StepNormalizerBounds#LAST LAST}</td><td>0.8, 1.3, 1.8, 2.3, 2.8, 3.1</td></tr> 052 * <tr><td>0.3</td><td>3.1</td><td>forward</td><td>{@link StepNormalizerMode#INCREMENT INCREMENT}</td><td>{@link StepNormalizerBounds#BOTH BOTH}</td><td>0.3, 0.8, 1.3, 1.8, 2.3, 2.8, 3.1</td></tr> 053 * <tr><td>0.3</td><td>3.1</td><td>forward</td><td>{@link StepNormalizerMode#MULTIPLES MULTIPLES}</td><td>{@link StepNormalizerBounds#NEITHER NEITHER}</td><td>0.5, 1.0, 1.5, 2.0, 2.5, 3.0</td></tr> 054 * <tr><td>0.3</td><td>3.1</td><td>forward</td><td>{@link StepNormalizerMode#MULTIPLES MULTIPLES}</td><td>{@link StepNormalizerBounds#FIRST FIRST}</td><td>0.3, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0</td></tr> 055 * <tr><td>0.3</td><td>3.1</td><td>forward</td><td>{@link StepNormalizerMode#MULTIPLES MULTIPLES}</td><td>{@link StepNormalizerBounds#LAST LAST}</td><td>0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.1</td></tr> 056 * <tr><td>0.3</td><td>3.1</td><td>forward</td><td>{@link StepNormalizerMode#MULTIPLES MULTIPLES}</td><td>{@link StepNormalizerBounds#BOTH BOTH}</td><td>0.3, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.1</td></tr> 057 * <tr><td>0.0</td><td>3.0</td><td>forward</td><td>{@link StepNormalizerMode#INCREMENT INCREMENT}</td><td>{@link StepNormalizerBounds#NEITHER NEITHER}</td><td>0.5, 1.0, 1.5, 2.0, 2.5, 3.0</td></tr> 058 * <tr><td>0.0</td><td>3.0</td><td>forward</td><td>{@link StepNormalizerMode#INCREMENT INCREMENT}</td><td>{@link StepNormalizerBounds#FIRST FIRST}</td><td>0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0</td></tr> 059 * <tr><td>0.0</td><td>3.0</td><td>forward</td><td>{@link StepNormalizerMode#INCREMENT INCREMENT}</td><td>{@link StepNormalizerBounds#LAST LAST}</td><td>0.5, 1.0, 1.5, 2.0, 2.5, 3.0</td></tr> 060 * <tr><td>0.0</td><td>3.0</td><td>forward</td><td>{@link StepNormalizerMode#INCREMENT INCREMENT}</td><td>{@link StepNormalizerBounds#BOTH BOTH}</td><td>0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0</td></tr> 061 * <tr><td>0.0</td><td>3.0</td><td>forward</td><td>{@link StepNormalizerMode#MULTIPLES MULTIPLES}</td><td>{@link StepNormalizerBounds#NEITHER NEITHER}</td><td>0.5, 1.0, 1.5, 2.0, 2.5, 3.0</td></tr> 062 * <tr><td>0.0</td><td>3.0</td><td>forward</td><td>{@link StepNormalizerMode#MULTIPLES MULTIPLES}</td><td>{@link StepNormalizerBounds#FIRST FIRST}</td><td>0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0</td></tr> 063 * <tr><td>0.0</td><td>3.0</td><td>forward</td><td>{@link StepNormalizerMode#MULTIPLES MULTIPLES}</td><td>{@link StepNormalizerBounds#LAST LAST}</td><td>0.5, 1.0, 1.5, 2.0, 2.5, 3.0</td></tr> 064 * <tr><td>0.0</td><td>3.0</td><td>forward</td><td>{@link StepNormalizerMode#MULTIPLES MULTIPLES}</td><td>{@link StepNormalizerBounds#BOTH BOTH}</td><td>0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0</td></tr> 065 * <tr><td>3.1</td><td>0.3</td><td>backward</td><td>{@link StepNormalizerMode#INCREMENT INCREMENT}</td><td>{@link StepNormalizerBounds#NEITHER NEITHER}</td><td>2.6, 2.1, 1.6, 1.1, 0.6</td></tr> 066 * <tr><td>3.1</td><td>0.3</td><td>backward</td><td>{@link StepNormalizerMode#INCREMENT INCREMENT}</td><td>{@link StepNormalizerBounds#FIRST FIRST}</td><td>3.1, 2.6, 2.1, 1.6, 1.1, 0.6</td></tr> 067 * <tr><td>3.1</td><td>0.3</td><td>backward</td><td>{@link StepNormalizerMode#INCREMENT INCREMENT}</td><td>{@link StepNormalizerBounds#LAST LAST}</td><td>2.6, 2.1, 1.6, 1.1, 0.6, 0.3</td></tr> 068 * <tr><td>3.1</td><td>0.3</td><td>backward</td><td>{@link StepNormalizerMode#INCREMENT INCREMENT}</td><td>{@link StepNormalizerBounds#BOTH BOTH}</td><td>3.1, 2.6, 2.1, 1.6, 1.1, 0.6, 0.3</td></tr> 069 * <tr><td>3.1</td><td>0.3</td><td>backward</td><td>{@link StepNormalizerMode#MULTIPLES MULTIPLES}</td><td>{@link StepNormalizerBounds#NEITHER NEITHER}</td><td>3.0, 2.5, 2.0, 1.5, 1.0, 0.5</td></tr> 070 * <tr><td>3.1</td><td>0.3</td><td>backward</td><td>{@link StepNormalizerMode#MULTIPLES MULTIPLES}</td><td>{@link StepNormalizerBounds#FIRST FIRST}</td><td>3.1, 3.0, 2.5, 2.0, 1.5, 1.0, 0.5</td></tr> 071 * <tr><td>3.1</td><td>0.3</td><td>backward</td><td>{@link StepNormalizerMode#MULTIPLES MULTIPLES}</td><td>{@link StepNormalizerBounds#LAST LAST}</td><td>3.0, 2.5, 2.0, 1.5, 1.0, 0.5, 0.3</td></tr> 072 * <tr><td>3.1</td><td>0.3</td><td>backward</td><td>{@link StepNormalizerMode#MULTIPLES MULTIPLES}</td><td>{@link StepNormalizerBounds#BOTH BOTH}</td><td>3.1, 3.0, 2.5, 2.0, 1.5, 1.0, 0.5, 0.3</td></tr> 073 * <tr><td>3.0</td><td>0.0</td><td>backward</td><td>{@link StepNormalizerMode#INCREMENT INCREMENT}</td><td>{@link StepNormalizerBounds#NEITHER NEITHER}</td><td>2.5, 2.0, 1.5, 1.0, 0.5, 0.0</td></tr> 074 * <tr><td>3.0</td><td>0.0</td><td>backward</td><td>{@link StepNormalizerMode#INCREMENT INCREMENT}</td><td>{@link StepNormalizerBounds#FIRST FIRST}</td><td>3.0, 2.5, 2.0, 1.5, 1.0, 0.5, 0.0</td></tr> 075 * <tr><td>3.0</td><td>0.0</td><td>backward</td><td>{@link StepNormalizerMode#INCREMENT INCREMENT}</td><td>{@link StepNormalizerBounds#LAST LAST}</td><td>2.5, 2.0, 1.5, 1.0, 0.5, 0.0</td></tr> 076 * <tr><td>3.0</td><td>0.0</td><td>backward</td><td>{@link StepNormalizerMode#INCREMENT INCREMENT}</td><td>{@link StepNormalizerBounds#BOTH BOTH}</td><td>3.0, 2.5, 2.0, 1.5, 1.0, 0.5, 0.0</td></tr> 077 * <tr><td>3.0</td><td>0.0</td><td>backward</td><td>{@link StepNormalizerMode#MULTIPLES MULTIPLES}</td><td>{@link StepNormalizerBounds#NEITHER NEITHER}</td><td>2.5, 2.0, 1.5, 1.0, 0.5, 0.0</td></tr> 078 * <tr><td>3.0</td><td>0.0</td><td>backward</td><td>{@link StepNormalizerMode#MULTIPLES MULTIPLES}</td><td>{@link StepNormalizerBounds#FIRST FIRST}</td><td>3.0, 2.5, 2.0, 1.5, 1.0, 0.5, 0.0</td></tr> 079 * <tr><td>3.0</td><td>0.0</td><td>backward</td><td>{@link StepNormalizerMode#MULTIPLES MULTIPLES}</td><td>{@link StepNormalizerBounds#LAST LAST}</td><td>2.5, 2.0, 1.5, 1.0, 0.5, 0.0</td></tr> 080 * <tr><td>3.0</td><td>0.0</td><td>backward</td><td>{@link StepNormalizerMode#MULTIPLES MULTIPLES}</td><td>{@link StepNormalizerBounds#BOTH BOTH}</td><td>3.0, 2.5, 2.0, 1.5, 1.0, 0.5, 0.0</td></tr> 081 * </table> 082 * </p> 083 * 084 * @see StepHandler 085 * @see FixedStepHandler 086 * @see StepNormalizerMode 087 * @see StepNormalizerBounds 088 * @since 1.2 089 */ 090 091public class StepNormalizer implements StepHandler { 092 /** Fixed time step. */ 093 private double h; 094 095 /** Underlying step handler. */ 096 private final FixedStepHandler handler; 097 098 /** First step time. */ 099 private double firstTime; 100 101 /** Last step time. */ 102 private double lastTime; 103 104 /** Last state vector. */ 105 private double[] lastState; 106 107 /** Last derivatives vector. */ 108 private double[] lastDerivatives; 109 110 /** Integration direction indicator. */ 111 private boolean forward; 112 113 /** The step normalizer bounds settings to use. */ 114 private final StepNormalizerBounds bounds; 115 116 /** The step normalizer mode to use. */ 117 private final StepNormalizerMode mode; 118 119 /** Simple constructor. Uses {@link StepNormalizerMode#INCREMENT INCREMENT} 120 * mode, and {@link StepNormalizerBounds#FIRST FIRST} bounds setting, for 121 * backwards compatibility. 122 * @param h fixed time step (sign is not used) 123 * @param handler fixed time step handler to wrap 124 */ 125 public StepNormalizer(final double h, final FixedStepHandler handler) { 126 this(h, handler, StepNormalizerMode.INCREMENT, 127 StepNormalizerBounds.FIRST); 128 } 129 130 /** Simple constructor. Uses {@link StepNormalizerBounds#FIRST FIRST} 131 * bounds setting. 132 * @param h fixed time step (sign is not used) 133 * @param handler fixed time step handler to wrap 134 * @param mode step normalizer mode to use 135 * @since 3.0 136 */ 137 public StepNormalizer(final double h, final FixedStepHandler handler, 138 final StepNormalizerMode mode) { 139 this(h, handler, mode, StepNormalizerBounds.FIRST); 140 } 141 142 /** Simple constructor. Uses {@link StepNormalizerMode#INCREMENT INCREMENT} 143 * mode. 144 * @param h fixed time step (sign is not used) 145 * @param handler fixed time step handler to wrap 146 * @param bounds step normalizer bounds setting to use 147 * @since 3.0 148 */ 149 public StepNormalizer(final double h, final FixedStepHandler handler, 150 final StepNormalizerBounds bounds) { 151 this(h, handler, StepNormalizerMode.INCREMENT, bounds); 152 } 153 154 /** Simple constructor. 155 * @param h fixed time step (sign is not used) 156 * @param handler fixed time step handler to wrap 157 * @param mode step normalizer mode to use 158 * @param bounds step normalizer bounds setting to use 159 * @since 3.0 160 */ 161 public StepNormalizer(final double h, final FixedStepHandler handler, 162 final StepNormalizerMode mode, 163 final StepNormalizerBounds bounds) { 164 this.h = FastMath.abs(h); 165 this.handler = handler; 166 this.mode = mode; 167 this.bounds = bounds; 168 firstTime = Double.NaN; 169 lastTime = Double.NaN; 170 lastState = null; 171 lastDerivatives = null; 172 forward = true; 173 } 174 175 /** {@inheritDoc} */ 176 public void init(double t0, double[] y0, double t) { 177 178 firstTime = Double.NaN; 179 lastTime = Double.NaN; 180 lastState = null; 181 lastDerivatives = null; 182 forward = true; 183 184 // initialize the underlying handler 185 handler.init(t0, y0, t); 186 187 } 188 189 /** 190 * Handle the last accepted step 191 * @param interpolator interpolator for the last accepted step. For 192 * efficiency purposes, the various integrators reuse the same 193 * object on each call, so if the instance wants to keep it across 194 * all calls (for example to provide at the end of the integration a 195 * continuous model valid throughout the integration range), it 196 * should build a local copy using the clone method and store this 197 * copy. 198 * @param isLast true if the step is the last one 199 * @exception MaxCountExceededException if the interpolator throws one because 200 * the number of functions evaluations is exceeded 201 */ 202 public void handleStep(final StepInterpolator interpolator, final boolean isLast) 203 throws MaxCountExceededException { 204 // The first time, update the last state with the start information. 205 if (lastState == null) { 206 firstTime = interpolator.getPreviousTime(); 207 lastTime = interpolator.getPreviousTime(); 208 interpolator.setInterpolatedTime(lastTime); 209 lastState = interpolator.getInterpolatedState().clone(); 210 lastDerivatives = interpolator.getInterpolatedDerivatives().clone(); 211 212 // Take the integration direction into account. 213 forward = interpolator.getCurrentTime() >= lastTime; 214 if (!forward) { 215 h = -h; 216 } 217 } 218 219 // Calculate next normalized step time. 220 double nextTime = (mode == StepNormalizerMode.INCREMENT) ? 221 lastTime + h : 222 (FastMath.floor(lastTime / h) + 1) * h; 223 if (mode == StepNormalizerMode.MULTIPLES && 224 Precision.equals(nextTime, lastTime, 1)) { 225 nextTime += h; 226 } 227 228 // Process normalized steps as long as they are in the current step. 229 boolean nextInStep = isNextInStep(nextTime, interpolator); 230 while (nextInStep) { 231 // Output the stored previous step. 232 doNormalizedStep(false); 233 234 // Store the next step as last step. 235 storeStep(interpolator, nextTime); 236 237 // Move on to the next step. 238 nextTime += h; 239 nextInStep = isNextInStep(nextTime, interpolator); 240 } 241 242 if (isLast) { 243 // There will be no more steps. The stored one should be given to 244 // the handler. We may have to output one more step. Only the last 245 // one of those should be flagged as being the last. 246 boolean addLast = bounds.lastIncluded() && 247 lastTime != interpolator.getCurrentTime(); 248 doNormalizedStep(!addLast); 249 if (addLast) { 250 storeStep(interpolator, interpolator.getCurrentTime()); 251 doNormalizedStep(true); 252 } 253 } 254 } 255 256 /** 257 * Returns a value indicating whether the next normalized time is in the 258 * current step. 259 * @param nextTime the next normalized time 260 * @param interpolator interpolator for the last accepted step, to use to 261 * get the end time of the current step 262 * @return value indicating whether the next normalized time is in the 263 * current step 264 */ 265 private boolean isNextInStep(double nextTime, 266 StepInterpolator interpolator) { 267 return forward ? 268 nextTime <= interpolator.getCurrentTime() : 269 nextTime >= interpolator.getCurrentTime(); 270 } 271 272 /** 273 * Invokes the underlying step handler for the current normalized step. 274 * @param isLast true if the step is the last one 275 */ 276 private void doNormalizedStep(boolean isLast) { 277 if (!bounds.firstIncluded() && firstTime == lastTime) { 278 return; 279 } 280 handler.handleStep(lastTime, lastState, lastDerivatives, isLast); 281 } 282 283 /** Stores the interpolated information for the given time in the current 284 * state. 285 * @param interpolator interpolator for the last accepted step, to use to 286 * get the interpolated information 287 * @param t the time for which to store the interpolated information 288 * @exception MaxCountExceededException if the interpolator throws one because 289 * the number of functions evaluations is exceeded 290 */ 291 private void storeStep(StepInterpolator interpolator, double t) 292 throws MaxCountExceededException { 293 lastTime = t; 294 interpolator.setInterpolatedTime(lastTime); 295 System.arraycopy(interpolator.getInterpolatedState(), 0, 296 lastState, 0, lastState.length); 297 System.arraycopy(interpolator.getInterpolatedDerivatives(), 0, 298 lastDerivatives, 0, lastDerivatives.length); 299 } 300}