001/* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017package org.apache.commons.math3.optim.nonlinear.scalar; 018 019import org.apache.commons.math3.analysis.MultivariateVectorFunction; 020import org.apache.commons.math3.optim.ConvergenceChecker; 021import org.apache.commons.math3.optim.OptimizationData; 022import org.apache.commons.math3.optim.PointValuePair; 023import org.apache.commons.math3.exception.TooManyEvaluationsException; 024 025/** 026 * Base class for implementing optimizers for multivariate scalar 027 * differentiable functions. 028 * It contains boiler-plate code for dealing with gradient evaluation. 029 * 030 * @since 3.1 031 */ 032public abstract class GradientMultivariateOptimizer 033 extends MultivariateOptimizer { 034 /** 035 * Gradient of the objective function. 036 */ 037 private MultivariateVectorFunction gradient; 038 039 /** 040 * @param checker Convergence checker. 041 */ 042 protected GradientMultivariateOptimizer(ConvergenceChecker<PointValuePair> checker) { 043 super(checker); 044 } 045 046 /** 047 * Compute the gradient vector. 048 * 049 * @param params Point at which the gradient must be evaluated. 050 * @return the gradient at the specified point. 051 */ 052 protected double[] computeObjectiveGradient(final double[] params) { 053 return gradient.value(params); 054 } 055 056 /** 057 * {@inheritDoc} 058 * 059 * @param optData Optimization data. In addition to those documented in 060 * {@link MultivariateOptimizer#parseOptimizationData(OptimizationData[]) 061 * MultivariateOptimizer}, this method will register the following data: 062 * <ul> 063 * <li>{@link ObjectiveFunctionGradient}</li> 064 * </ul> 065 * @return {@inheritDoc} 066 * @throws TooManyEvaluationsException if the maximal number of 067 * evaluations (of the objective function) is exceeded. 068 */ 069 @Override 070 public PointValuePair optimize(OptimizationData... optData) 071 throws TooManyEvaluationsException { 072 // Set up base class and perform computation. 073 return super.optimize(optData); 074 } 075 076 /** 077 * Scans the list of (required and optional) optimization data that 078 * characterize the problem. 079 * 080 * @param optData Optimization data. 081 * The following data will be looked for: 082 * <ul> 083 * <li>{@link ObjectiveFunctionGradient}</li> 084 * </ul> 085 */ 086 @Override 087 protected void parseOptimizationData(OptimizationData... optData) { 088 // Allow base class to register its own data. 089 super.parseOptimizationData(optData); 090 091 // The existing values (as set by the previous call) are reused if 092 // not provided in the argument list. 093 for (OptimizationData data : optData) { 094 if (data instanceof ObjectiveFunctionGradient) { 095 gradient = ((ObjectiveFunctionGradient) data).getObjectiveFunctionGradient(); 096 // If more data must be parsed, this statement _must_ be 097 // changed to "continue". 098 break; 099 } 100 } 101 } 102}