001/*
002 * Licensed to the Apache Software Foundation (ASF) under one or more
003 * contributor license agreements.  See the NOTICE file distributed with
004 * this work for additional information regarding copyright ownership.
005 * The ASF licenses this file to You under the Apache License, Version 2.0
006 * (the "License"); you may not use this file except in compliance with
007 * the License.  You may obtain a copy of the License at
008 *
009 *      http://www.apache.org/licenses/LICENSE-2.0
010 *
011 * Unless required by applicable law or agreed to in writing, software
012 * distributed under the License is distributed on an "AS IS" BASIS,
013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
014 * See the License for the specific language governing permissions and
015 * limitations under the License.
016 */
017
018package org.apache.commons.math3.optimization.direct;
019
020import org.apache.commons.math3.util.FastMath;
021import org.apache.commons.math3.util.MathArrays;
022import org.apache.commons.math3.analysis.UnivariateFunction;
023import org.apache.commons.math3.analysis.MultivariateFunction;
024import org.apache.commons.math3.exception.NumberIsTooSmallException;
025import org.apache.commons.math3.exception.NotStrictlyPositiveException;
026import org.apache.commons.math3.optimization.GoalType;
027import org.apache.commons.math3.optimization.PointValuePair;
028import org.apache.commons.math3.optimization.ConvergenceChecker;
029import org.apache.commons.math3.optimization.MultivariateOptimizer;
030import org.apache.commons.math3.optimization.univariate.BracketFinder;
031import org.apache.commons.math3.optimization.univariate.BrentOptimizer;
032import org.apache.commons.math3.optimization.univariate.UnivariatePointValuePair;
033import org.apache.commons.math3.optimization.univariate.SimpleUnivariateValueChecker;
034
035/**
036 * Powell algorithm.
037 * This code is translated and adapted from the Python version of this
038 * algorithm (as implemented in module {@code optimize.py} v0.5 of
039 * <em>SciPy</em>).
040 * <br/>
041 * The default stopping criterion is based on the differences of the
042 * function value between two successive iterations. It is however possible
043 * to define a custom convergence checker that might terminate the algorithm
044 * earlier.
045 * <br/>
046 * The internal line search optimizer is a {@link BrentOptimizer} with a
047 * convergence checker set to {@link SimpleUnivariateValueChecker}.
048 *
049 * @deprecated As of 3.1 (to be removed in 4.0).
050 * @since 2.2
051 */
052@Deprecated
053public class PowellOptimizer
054    extends BaseAbstractMultivariateOptimizer<MultivariateFunction>
055    implements MultivariateOptimizer {
056    /**
057     * Minimum relative tolerance.
058     */
059    private static final double MIN_RELATIVE_TOLERANCE = 2 * FastMath.ulp(1d);
060    /**
061     * Relative threshold.
062     */
063    private final double relativeThreshold;
064    /**
065     * Absolute threshold.
066     */
067    private final double absoluteThreshold;
068    /**
069     * Line search.
070     */
071    private final LineSearch line;
072
073    /**
074     * This constructor allows to specify a user-defined convergence checker,
075     * in addition to the parameters that control the default convergence
076     * checking procedure.
077     * <br/>
078     * The internal line search tolerances are set to the square-root of their
079     * corresponding value in the multivariate optimizer.
080     *
081     * @param rel Relative threshold.
082     * @param abs Absolute threshold.
083     * @param checker Convergence checker.
084     * @throws NotStrictlyPositiveException if {@code abs <= 0}.
085     * @throws NumberIsTooSmallException if {@code rel < 2 * Math.ulp(1d)}.
086     */
087    public PowellOptimizer(double rel,
088                           double abs,
089                           ConvergenceChecker<PointValuePair> checker) {
090        this(rel, abs, FastMath.sqrt(rel), FastMath.sqrt(abs), checker);
091    }
092
093    /**
094     * This constructor allows to specify a user-defined convergence checker,
095     * in addition to the parameters that control the default convergence
096     * checking procedure and the line search tolerances.
097     *
098     * @param rel Relative threshold for this optimizer.
099     * @param abs Absolute threshold for this optimizer.
100     * @param lineRel Relative threshold for the internal line search optimizer.
101     * @param lineAbs Absolute threshold for the internal line search optimizer.
102     * @param checker Convergence checker.
103     * @throws NotStrictlyPositiveException if {@code abs <= 0}.
104     * @throws NumberIsTooSmallException if {@code rel < 2 * Math.ulp(1d)}.
105     */
106    public PowellOptimizer(double rel,
107                           double abs,
108                           double lineRel,
109                           double lineAbs,
110                           ConvergenceChecker<PointValuePair> checker) {
111        super(checker);
112
113        if (rel < MIN_RELATIVE_TOLERANCE) {
114            throw new NumberIsTooSmallException(rel, MIN_RELATIVE_TOLERANCE, true);
115        }
116        if (abs <= 0) {
117            throw new NotStrictlyPositiveException(abs);
118        }
119        relativeThreshold = rel;
120        absoluteThreshold = abs;
121
122        // Create the line search optimizer.
123        line = new LineSearch(lineRel,
124                              lineAbs);
125    }
126
127    /**
128     * The parameters control the default convergence checking procedure.
129     * <br/>
130     * The internal line search tolerances are set to the square-root of their
131     * corresponding value in the multivariate optimizer.
132     *
133     * @param rel Relative threshold.
134     * @param abs Absolute threshold.
135     * @throws NotStrictlyPositiveException if {@code abs <= 0}.
136     * @throws NumberIsTooSmallException if {@code rel < 2 * Math.ulp(1d)}.
137     */
138    public PowellOptimizer(double rel,
139                           double abs) {
140        this(rel, abs, null);
141    }
142
143    /**
144     * Builds an instance with the default convergence checking procedure.
145     *
146     * @param rel Relative threshold.
147     * @param abs Absolute threshold.
148     * @param lineRel Relative threshold for the internal line search optimizer.
149     * @param lineAbs Absolute threshold for the internal line search optimizer.
150     * @throws NotStrictlyPositiveException if {@code abs <= 0}.
151     * @throws NumberIsTooSmallException if {@code rel < 2 * Math.ulp(1d)}.
152     * @since 3.1
153     */
154    public PowellOptimizer(double rel,
155                           double abs,
156                           double lineRel,
157                           double lineAbs) {
158        this(rel, abs, lineRel, lineAbs, null);
159    }
160
161    /** {@inheritDoc} */
162    @Override
163    protected PointValuePair doOptimize() {
164        final GoalType goal = getGoalType();
165        final double[] guess = getStartPoint();
166        final int n = guess.length;
167
168        final double[][] direc = new double[n][n];
169        for (int i = 0; i < n; i++) {
170            direc[i][i] = 1;
171        }
172
173        final ConvergenceChecker<PointValuePair> checker
174            = getConvergenceChecker();
175
176        double[] x = guess;
177        double fVal = computeObjectiveValue(x);
178        double[] x1 = x.clone();
179        int iter = 0;
180        while (true) {
181            ++iter;
182
183            double fX = fVal;
184            double fX2 = 0;
185            double delta = 0;
186            int bigInd = 0;
187            double alphaMin = 0;
188
189            for (int i = 0; i < n; i++) {
190                final double[] d = MathArrays.copyOf(direc[i]);
191
192                fX2 = fVal;
193
194                final UnivariatePointValuePair optimum = line.search(x, d);
195                fVal = optimum.getValue();
196                alphaMin = optimum.getPoint();
197                final double[][] result = newPointAndDirection(x, d, alphaMin);
198                x = result[0];
199
200                if ((fX2 - fVal) > delta) {
201                    delta = fX2 - fVal;
202                    bigInd = i;
203                }
204            }
205
206            // Default convergence check.
207            boolean stop = 2 * (fX - fVal) <=
208                (relativeThreshold * (FastMath.abs(fX) + FastMath.abs(fVal)) +
209                 absoluteThreshold);
210
211            final PointValuePair previous = new PointValuePair(x1, fX);
212            final PointValuePair current = new PointValuePair(x, fVal);
213            if (!stop && checker != null) {
214                stop = checker.converged(iter, previous, current);
215            }
216            if (stop) {
217                if (goal == GoalType.MINIMIZE) {
218                    return (fVal < fX) ? current : previous;
219                } else {
220                    return (fVal > fX) ? current : previous;
221                }
222            }
223
224            final double[] d = new double[n];
225            final double[] x2 = new double[n];
226            for (int i = 0; i < n; i++) {
227                d[i] = x[i] - x1[i];
228                x2[i] = 2 * x[i] - x1[i];
229            }
230
231            x1 = x.clone();
232            fX2 = computeObjectiveValue(x2);
233
234            if (fX > fX2) {
235                double t = 2 * (fX + fX2 - 2 * fVal);
236                double temp = fX - fVal - delta;
237                t *= temp * temp;
238                temp = fX - fX2;
239                t -= delta * temp * temp;
240
241                if (t < 0.0) {
242                    final UnivariatePointValuePair optimum = line.search(x, d);
243                    fVal = optimum.getValue();
244                    alphaMin = optimum.getPoint();
245                    final double[][] result = newPointAndDirection(x, d, alphaMin);
246                    x = result[0];
247
248                    final int lastInd = n - 1;
249                    direc[bigInd] = direc[lastInd];
250                    direc[lastInd] = result[1];
251                }
252            }
253        }
254    }
255
256    /**
257     * Compute a new point (in the original space) and a new direction
258     * vector, resulting from the line search.
259     *
260     * @param p Point used in the line search.
261     * @param d Direction used in the line search.
262     * @param optimum Optimum found by the line search.
263     * @return a 2-element array containing the new point (at index 0) and
264     * the new direction (at index 1).
265     */
266    private double[][] newPointAndDirection(double[] p,
267                                            double[] d,
268                                            double optimum) {
269        final int n = p.length;
270        final double[] nP = new double[n];
271        final double[] nD = new double[n];
272        for (int i = 0; i < n; i++) {
273            nD[i] = d[i] * optimum;
274            nP[i] = p[i] + nD[i];
275        }
276
277        final double[][] result = new double[2][];
278        result[0] = nP;
279        result[1] = nD;
280
281        return result;
282    }
283
284    /**
285     * Class for finding the minimum of the objective function along a given
286     * direction.
287     */
288    private class LineSearch extends BrentOptimizer {
289        /**
290         * Value that will pass the precondition check for {@link BrentOptimizer}
291         * but will not pass the convergence check, so that the custom checker
292         * will always decide when to stop the line search.
293         */
294        private static final double REL_TOL_UNUSED = 1e-15;
295        /**
296         * Value that will pass the precondition check for {@link BrentOptimizer}
297         * but will not pass the convergence check, so that the custom checker
298         * will always decide when to stop the line search.
299         */
300        private static final double ABS_TOL_UNUSED = Double.MIN_VALUE;
301        /**
302         * Automatic bracketing.
303         */
304        private final BracketFinder bracket = new BracketFinder();
305
306        /**
307         * The "BrentOptimizer" default stopping criterion uses the tolerances
308         * to check the domain (point) values, not the function values.
309         * We thus create a custom checker to use function values.
310         *
311         * @param rel Relative threshold.
312         * @param abs Absolute threshold.
313         */
314        LineSearch(double rel,
315                   double abs) {
316            super(REL_TOL_UNUSED,
317                  ABS_TOL_UNUSED,
318                  new SimpleUnivariateValueChecker(rel, abs));
319        }
320
321        /**
322         * Find the minimum of the function {@code f(p + alpha * d)}.
323         *
324         * @param p Starting point.
325         * @param d Search direction.
326         * @return the optimum.
327         * @throws org.apache.commons.math3.exception.TooManyEvaluationsException
328         * if the number of evaluations is exceeded.
329         */
330        public UnivariatePointValuePair search(final double[] p, final double[] d) {
331            final int n = p.length;
332            final UnivariateFunction f = new UnivariateFunction() {
333                    /** {@inheritDoc} */
334                    public double value(double alpha) {
335                        final double[] x = new double[n];
336                        for (int i = 0; i < n; i++) {
337                            x[i] = p[i] + alpha * d[i];
338                        }
339                        final double obj = PowellOptimizer.this.computeObjectiveValue(x);
340                        return obj;
341                    }
342                };
343
344            final GoalType goal = PowellOptimizer.this.getGoalType();
345            bracket.search(f, goal, 0, 1);
346            // Passing "MAX_VALUE" as a dummy value because it is the enclosing
347            // class that counts the number of evaluations (and will eventually
348            // generate the exception).
349            return optimize(Integer.MAX_VALUE, f, goal,
350                            bracket.getLo(), bracket.getHi(), bracket.getMid());
351        }
352    }
353}