001/* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017 018package org.apache.commons.math3.optimization.general; 019 020import org.apache.commons.math3.analysis.MultivariateVectorFunction; 021import org.apache.commons.math3.analysis.differentiation.GradientFunction; 022import org.apache.commons.math3.analysis.differentiation.MultivariateDifferentiableFunction; 023import org.apache.commons.math3.optimization.ConvergenceChecker; 024import org.apache.commons.math3.optimization.GoalType; 025import org.apache.commons.math3.optimization.OptimizationData; 026import org.apache.commons.math3.optimization.InitialGuess; 027import org.apache.commons.math3.optimization.PointValuePair; 028import org.apache.commons.math3.optimization.direct.BaseAbstractMultivariateOptimizer; 029 030/** 031 * Base class for implementing optimizers for multivariate scalar 032 * differentiable functions. 033 * It contains boiler-plate code for dealing with gradient evaluation. 034 * 035 * @deprecated As of 3.1 (to be removed in 4.0). 036 * @since 3.1 037 */ 038@Deprecated 039public abstract class AbstractDifferentiableOptimizer 040 extends BaseAbstractMultivariateOptimizer<MultivariateDifferentiableFunction> { 041 /** 042 * Objective function gradient. 043 */ 044 private MultivariateVectorFunction gradient; 045 046 /** 047 * @param checker Convergence checker. 048 */ 049 protected AbstractDifferentiableOptimizer(ConvergenceChecker<PointValuePair> checker) { 050 super(checker); 051 } 052 053 /** 054 * Compute the gradient vector. 055 * 056 * @param evaluationPoint Point at which the gradient must be evaluated. 057 * @return the gradient at the specified point. 058 */ 059 protected double[] computeObjectiveGradient(final double[] evaluationPoint) { 060 return gradient.value(evaluationPoint); 061 } 062 063 /** 064 * {@inheritDoc} 065 * 066 * @deprecated In 3.1. Please use 067 * {@link #optimizeInternal(int,MultivariateDifferentiableFunction,GoalType,OptimizationData[])} 068 * instead. 069 */ 070 @Override@Deprecated 071 protected PointValuePair optimizeInternal(final int maxEval, 072 final MultivariateDifferentiableFunction f, 073 final GoalType goalType, 074 final double[] startPoint) { 075 return optimizeInternal(maxEval, f, goalType, new InitialGuess(startPoint)); 076 } 077 078 /** {@inheritDoc} */ 079 @Override 080 protected PointValuePair optimizeInternal(final int maxEval, 081 final MultivariateDifferentiableFunction f, 082 final GoalType goalType, 083 final OptimizationData... optData) { 084 // Store optimization problem characteristics. 085 gradient = new GradientFunction(f); 086 087 // Perform optimization. 088 return super.optimizeInternal(maxEval, f, goalType, optData); 089 } 090}