001/* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017 018package org.apache.commons.math3.optimization.general; 019 020import org.apache.commons.math3.analysis.DifferentiableMultivariateFunction; 021import org.apache.commons.math3.analysis.MultivariateVectorFunction; 022import org.apache.commons.math3.analysis.FunctionUtils; 023import org.apache.commons.math3.analysis.differentiation.MultivariateDifferentiableFunction; 024import org.apache.commons.math3.optimization.DifferentiableMultivariateOptimizer; 025import org.apache.commons.math3.optimization.GoalType; 026import org.apache.commons.math3.optimization.ConvergenceChecker; 027import org.apache.commons.math3.optimization.PointValuePair; 028import org.apache.commons.math3.optimization.direct.BaseAbstractMultivariateOptimizer; 029 030/** 031 * Base class for implementing optimizers for multivariate scalar 032 * differentiable functions. 033 * It contains boiler-plate code for dealing with gradient evaluation. 034 * 035 * @deprecated As of 3.1 (to be removed in 4.0). 036 * @since 2.0 037 */ 038@Deprecated 039public abstract class AbstractScalarDifferentiableOptimizer 040 extends BaseAbstractMultivariateOptimizer<DifferentiableMultivariateFunction> 041 implements DifferentiableMultivariateOptimizer { 042 /** 043 * Objective function gradient. 044 */ 045 private MultivariateVectorFunction gradient; 046 047 /** 048 * Simple constructor with default settings. 049 * The convergence check is set to a 050 * {@link org.apache.commons.math3.optimization.SimpleValueChecker 051 * SimpleValueChecker}. 052 * @deprecated See {@link org.apache.commons.math3.optimization.SimpleValueChecker#SimpleValueChecker()} 053 */ 054 @Deprecated 055 protected AbstractScalarDifferentiableOptimizer() {} 056 057 /** 058 * @param checker Convergence checker. 059 */ 060 protected AbstractScalarDifferentiableOptimizer(ConvergenceChecker<PointValuePair> checker) { 061 super(checker); 062 } 063 064 /** 065 * Compute the gradient vector. 066 * 067 * @param evaluationPoint Point at which the gradient must be evaluated. 068 * @return the gradient at the specified point. 069 * @throws org.apache.commons.math3.exception.TooManyEvaluationsException 070 * if the allowed number of evaluations is exceeded. 071 */ 072 protected double[] computeObjectiveGradient(final double[] evaluationPoint) { 073 return gradient.value(evaluationPoint); 074 } 075 076 /** {@inheritDoc} */ 077 @Override 078 protected PointValuePair optimizeInternal(int maxEval, 079 final DifferentiableMultivariateFunction f, 080 final GoalType goalType, 081 final double[] startPoint) { 082 // Store optimization problem characteristics. 083 gradient = f.gradient(); 084 085 return super.optimizeInternal(maxEval, f, goalType, startPoint); 086 } 087 088 /** 089 * Optimize an objective function. 090 * 091 * @param f Objective function. 092 * @param goalType Type of optimization goal: either 093 * {@link GoalType#MAXIMIZE} or {@link GoalType#MINIMIZE}. 094 * @param startPoint Start point for optimization. 095 * @param maxEval Maximum number of function evaluations. 096 * @return the point/value pair giving the optimal value for objective 097 * function. 098 * @throws org.apache.commons.math3.exception.DimensionMismatchException 099 * if the start point dimension is wrong. 100 * @throws org.apache.commons.math3.exception.TooManyEvaluationsException 101 * if the maximal number of evaluations is exceeded. 102 * @throws org.apache.commons.math3.exception.NullArgumentException if 103 * any argument is {@code null}. 104 */ 105 public PointValuePair optimize(final int maxEval, 106 final MultivariateDifferentiableFunction f, 107 final GoalType goalType, 108 final double[] startPoint) { 109 return optimizeInternal(maxEval, 110 FunctionUtils.toDifferentiableMultivariateFunction(f), 111 goalType, 112 startPoint); 113 } 114}