001/*
002 * Licensed to the Apache Software Foundation (ASF) under one or more
003 * contributor license agreements.  See the NOTICE file distributed with
004 * this work for additional information regarding copyright ownership.
005 * The ASF licenses this file to You under the Apache License, Version 2.0
006 * (the "License"); you may not use this file except in compliance with
007 * the License.  You may obtain a copy of the License at
008 *
009 *      http://www.apache.org/licenses/LICENSE-2.0
010 *
011 * Unless required by applicable law or agreed to in writing, software
012 * distributed under the License is distributed on an "AS IS" BASIS,
013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
014 * See the License for the specific language governing permissions and
015 * limitations under the License.
016 */
017package org.apache.commons.math3.optimization.general;
018
019import java.util.Arrays;
020
021import org.apache.commons.math3.exception.ConvergenceException;
022import org.apache.commons.math3.exception.util.LocalizedFormats;
023import org.apache.commons.math3.optimization.PointVectorValuePair;
024import org.apache.commons.math3.optimization.ConvergenceChecker;
025import org.apache.commons.math3.linear.RealMatrix;
026import org.apache.commons.math3.util.Precision;
027import org.apache.commons.math3.util.FastMath;
028
029
030/**
031 * This class solves a least squares problem using the Levenberg-Marquardt algorithm.
032 *
033 * <p>This implementation <em>should</em> work even for over-determined systems
034 * (i.e. systems having more point than equations). Over-determined systems
035 * are solved by ignoring the point which have the smallest impact according
036 * to their jacobian column norm. Only the rank of the matrix and some loop bounds
037 * are changed to implement this.</p>
038 *
039 * <p>The resolution engine is a simple translation of the MINPACK <a
040 * href="http://www.netlib.org/minpack/lmder.f">lmder</a> routine with minor
041 * changes. The changes include the over-determined resolution, the use of
042 * inherited convergence checker and the Q.R. decomposition which has been
043 * rewritten following the algorithm described in the
044 * P. Lascaux and R. Theodor book <i>Analyse num&eacute;rique matricielle
045 * appliqu&eacute;e &agrave; l'art de l'ing&eacute;nieur</i>, Masson 1986.</p>
046 * <p>The authors of the original fortran version are:
047 * <ul>
048 * <li>Argonne National Laboratory. MINPACK project. March 1980</li>
049 * <li>Burton S. Garbow</li>
050 * <li>Kenneth E. Hillstrom</li>
051 * <li>Jorge J. More</li>
052 * </ul>
053 * The redistribution policy for MINPACK is available <a
054 * href="http://www.netlib.org/minpack/disclaimer">here</a>, for convenience, it
055 * is reproduced below.</p>
056 *
057 * <table border="0" width="80%" cellpadding="10" align="center" bgcolor="#E0E0E0">
058 * <tr><td>
059 *    Minpack Copyright Notice (1999) University of Chicago.
060 *    All rights reserved
061 * </td></tr>
062 * <tr><td>
063 * Redistribution and use in source and binary forms, with or without
064 * modification, are permitted provided that the following conditions
065 * are met:
066 * <ol>
067 *  <li>Redistributions of source code must retain the above copyright
068 *      notice, this list of conditions and the following disclaimer.</li>
069 * <li>Redistributions in binary form must reproduce the above
070 *     copyright notice, this list of conditions and the following
071 *     disclaimer in the documentation and/or other materials provided
072 *     with the distribution.</li>
073 * <li>The end-user documentation included with the redistribution, if any,
074 *     must include the following acknowledgment:
075 *     <code>This product includes software developed by the University of
076 *           Chicago, as Operator of Argonne National Laboratory.</code>
077 *     Alternately, this acknowledgment may appear in the software itself,
078 *     if and wherever such third-party acknowledgments normally appear.</li>
079 * <li><strong>WARRANTY DISCLAIMER. THE SOFTWARE IS SUPPLIED "AS IS"
080 *     WITHOUT WARRANTY OF ANY KIND. THE COPYRIGHT HOLDER, THE
081 *     UNITED STATES, THE UNITED STATES DEPARTMENT OF ENERGY, AND
082 *     THEIR EMPLOYEES: (1) DISCLAIM ANY WARRANTIES, EXPRESS OR
083 *     IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES
084 *     OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE
085 *     OR NON-INFRINGEMENT, (2) DO NOT ASSUME ANY LEGAL LIABILITY
086 *     OR RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS, OR
087 *     USEFULNESS OF THE SOFTWARE, (3) DO NOT REPRESENT THAT USE OF
088 *     THE SOFTWARE WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS, (4)
089 *     DO NOT WARRANT THAT THE SOFTWARE WILL FUNCTION
090 *     UNINTERRUPTED, THAT IT IS ERROR-FREE OR THAT ANY ERRORS WILL
091 *     BE CORRECTED.</strong></li>
092 * <li><strong>LIMITATION OF LIABILITY. IN NO EVENT WILL THE COPYRIGHT
093 *     HOLDER, THE UNITED STATES, THE UNITED STATES DEPARTMENT OF
094 *     ENERGY, OR THEIR EMPLOYEES: BE LIABLE FOR ANY INDIRECT,
095 *     INCIDENTAL, CONSEQUENTIAL, SPECIAL OR PUNITIVE DAMAGES OF
096 *     ANY KIND OR NATURE, INCLUDING BUT NOT LIMITED TO LOSS OF
097 *     PROFITS OR LOSS OF DATA, FOR ANY REASON WHATSOEVER, WHETHER
098 *     SUCH LIABILITY IS ASSERTED ON THE BASIS OF CONTRACT, TORT
099 *     (INCLUDING NEGLIGENCE OR STRICT LIABILITY), OR OTHERWISE,
100 *     EVEN IF ANY OF SAID PARTIES HAS BEEN WARNED OF THE
101 *     POSSIBILITY OF SUCH LOSS OR DAMAGES.</strong></li>
102 * <ol></td></tr>
103 * </table>
104 * @deprecated As of 3.1 (to be removed in 4.0).
105 * @since 2.0
106 *
107 */
108@Deprecated
109public class LevenbergMarquardtOptimizer extends AbstractLeastSquaresOptimizer {
110    /** Number of solved point. */
111    private int solvedCols;
112    /** Diagonal elements of the R matrix in the Q.R. decomposition. */
113    private double[] diagR;
114    /** Norms of the columns of the jacobian matrix. */
115    private double[] jacNorm;
116    /** Coefficients of the Householder transforms vectors. */
117    private double[] beta;
118    /** Columns permutation array. */
119    private int[] permutation;
120    /** Rank of the jacobian matrix. */
121    private int rank;
122    /** Levenberg-Marquardt parameter. */
123    private double lmPar;
124    /** Parameters evolution direction associated with lmPar. */
125    private double[] lmDir;
126    /** Positive input variable used in determining the initial step bound. */
127    private final double initialStepBoundFactor;
128    /** Desired relative error in the sum of squares. */
129    private final double costRelativeTolerance;
130    /**  Desired relative error in the approximate solution parameters. */
131    private final double parRelativeTolerance;
132    /** Desired max cosine on the orthogonality between the function vector
133     * and the columns of the jacobian. */
134    private final double orthoTolerance;
135    /** Threshold for QR ranking. */
136    private final double qrRankingThreshold;
137    /** Weighted residuals. */
138    private double[] weightedResidual;
139    /** Weighted Jacobian. */
140    private double[][] weightedJacobian;
141
142    /**
143     * Build an optimizer for least squares problems with default values
144     * for all the tuning parameters (see the {@link
145     * #LevenbergMarquardtOptimizer(double,double,double,double,double)
146     * other contructor}.
147     * The default values for the algorithm settings are:
148     * <ul>
149     *  <li>Initial step bound factor: 100</li>
150     *  <li>Cost relative tolerance: 1e-10</li>
151     *  <li>Parameters relative tolerance: 1e-10</li>
152     *  <li>Orthogonality tolerance: 1e-10</li>
153     *  <li>QR ranking threshold: {@link Precision#SAFE_MIN}</li>
154     * </ul>
155     */
156    public LevenbergMarquardtOptimizer() {
157        this(100, 1e-10, 1e-10, 1e-10, Precision.SAFE_MIN);
158    }
159
160    /**
161     * Constructor that allows the specification of a custom convergence
162     * checker.
163     * Note that all the usual convergence checks will be <em>disabled</em>.
164     * The default values for the algorithm settings are:
165     * <ul>
166     *  <li>Initial step bound factor: 100</li>
167     *  <li>Cost relative tolerance: 1e-10</li>
168     *  <li>Parameters relative tolerance: 1e-10</li>
169     *  <li>Orthogonality tolerance: 1e-10</li>
170     *  <li>QR ranking threshold: {@link Precision#SAFE_MIN}</li>
171     * </ul>
172     *
173     * @param checker Convergence checker.
174     */
175    public LevenbergMarquardtOptimizer(ConvergenceChecker<PointVectorValuePair> checker) {
176        this(100, checker, 1e-10, 1e-10, 1e-10, Precision.SAFE_MIN);
177    }
178
179    /**
180     * Constructor that allows the specification of a custom convergence
181     * checker, in addition to the standard ones.
182     *
183     * @param initialStepBoundFactor Positive input variable used in
184     * determining the initial step bound. This bound is set to the
185     * product of initialStepBoundFactor and the euclidean norm of
186     * {@code diag * x} if non-zero, or else to {@code initialStepBoundFactor}
187     * itself. In most cases factor should lie in the interval
188     * {@code (0.1, 100.0)}. {@code 100} is a generally recommended value.
189     * @param checker Convergence checker.
190     * @param costRelativeTolerance Desired relative error in the sum of
191     * squares.
192     * @param parRelativeTolerance Desired relative error in the approximate
193     * solution parameters.
194     * @param orthoTolerance Desired max cosine on the orthogonality between
195     * the function vector and the columns of the Jacobian.
196     * @param threshold Desired threshold for QR ranking. If the squared norm
197     * of a column vector is smaller or equal to this threshold during QR
198     * decomposition, it is considered to be a zero vector and hence the rank
199     * of the matrix is reduced.
200     */
201    public LevenbergMarquardtOptimizer(double initialStepBoundFactor,
202                                       ConvergenceChecker<PointVectorValuePair> checker,
203                                       double costRelativeTolerance,
204                                       double parRelativeTolerance,
205                                       double orthoTolerance,
206                                       double threshold) {
207        super(checker);
208        this.initialStepBoundFactor = initialStepBoundFactor;
209        this.costRelativeTolerance = costRelativeTolerance;
210        this.parRelativeTolerance = parRelativeTolerance;
211        this.orthoTolerance = orthoTolerance;
212        this.qrRankingThreshold = threshold;
213    }
214
215    /**
216     * Build an optimizer for least squares problems with default values
217     * for some of the tuning parameters (see the {@link
218     * #LevenbergMarquardtOptimizer(double,double,double,double,double)
219     * other contructor}.
220     * The default values for the algorithm settings are:
221     * <ul>
222     *  <li>Initial step bound factor}: 100</li>
223     *  <li>QR ranking threshold}: {@link Precision#SAFE_MIN}</li>
224     * </ul>
225     *
226     * @param costRelativeTolerance Desired relative error in the sum of
227     * squares.
228     * @param parRelativeTolerance Desired relative error in the approximate
229     * solution parameters.
230     * @param orthoTolerance Desired max cosine on the orthogonality between
231     * the function vector and the columns of the Jacobian.
232     */
233    public LevenbergMarquardtOptimizer(double costRelativeTolerance,
234                                       double parRelativeTolerance,
235                                       double orthoTolerance) {
236        this(100,
237             costRelativeTolerance, parRelativeTolerance, orthoTolerance,
238             Precision.SAFE_MIN);
239    }
240
241    /**
242     * The arguments control the behaviour of the default convergence checking
243     * procedure.
244     * Additional criteria can defined through the setting of a {@link
245     * ConvergenceChecker}.
246     *
247     * @param initialStepBoundFactor Positive input variable used in
248     * determining the initial step bound. This bound is set to the
249     * product of initialStepBoundFactor and the euclidean norm of
250     * {@code diag * x} if non-zero, or else to {@code initialStepBoundFactor}
251     * itself. In most cases factor should lie in the interval
252     * {@code (0.1, 100.0)}. {@code 100} is a generally recommended value.
253     * @param costRelativeTolerance Desired relative error in the sum of
254     * squares.
255     * @param parRelativeTolerance Desired relative error in the approximate
256     * solution parameters.
257     * @param orthoTolerance Desired max cosine on the orthogonality between
258     * the function vector and the columns of the Jacobian.
259     * @param threshold Desired threshold for QR ranking. If the squared norm
260     * of a column vector is smaller or equal to this threshold during QR
261     * decomposition, it is considered to be a zero vector and hence the rank
262     * of the matrix is reduced.
263     */
264    public LevenbergMarquardtOptimizer(double initialStepBoundFactor,
265                                       double costRelativeTolerance,
266                                       double parRelativeTolerance,
267                                       double orthoTolerance,
268                                       double threshold) {
269        super(null); // No custom convergence criterion.
270        this.initialStepBoundFactor = initialStepBoundFactor;
271        this.costRelativeTolerance = costRelativeTolerance;
272        this.parRelativeTolerance = parRelativeTolerance;
273        this.orthoTolerance = orthoTolerance;
274        this.qrRankingThreshold = threshold;
275    }
276
277    /** {@inheritDoc} */
278    @Override
279    protected PointVectorValuePair doOptimize() {
280        final int nR = getTarget().length; // Number of observed data.
281        final double[] currentPoint = getStartPoint();
282        final int nC = currentPoint.length; // Number of parameters.
283
284        // arrays shared with the other private methods
285        solvedCols  = FastMath.min(nR, nC);
286        diagR       = new double[nC];
287        jacNorm     = new double[nC];
288        beta        = new double[nC];
289        permutation = new int[nC];
290        lmDir       = new double[nC];
291
292        // local point
293        double   delta   = 0;
294        double   xNorm   = 0;
295        double[] diag    = new double[nC];
296        double[] oldX    = new double[nC];
297        double[] oldRes  = new double[nR];
298        double[] oldObj  = new double[nR];
299        double[] qtf     = new double[nR];
300        double[] work1   = new double[nC];
301        double[] work2   = new double[nC];
302        double[] work3   = new double[nC];
303
304        final RealMatrix weightMatrixSqrt = getWeightSquareRoot();
305
306        // Evaluate the function at the starting point and calculate its norm.
307        double[] currentObjective = computeObjectiveValue(currentPoint);
308        double[] currentResiduals = computeResiduals(currentObjective);
309        PointVectorValuePair current = new PointVectorValuePair(currentPoint, currentObjective);
310        double currentCost = computeCost(currentResiduals);
311
312        // Outer loop.
313        lmPar = 0;
314        boolean firstIteration = true;
315        int iter = 0;
316        final ConvergenceChecker<PointVectorValuePair> checker = getConvergenceChecker();
317        while (true) {
318            ++iter;
319            final PointVectorValuePair previous = current;
320
321            // QR decomposition of the jacobian matrix
322            qrDecomposition(computeWeightedJacobian(currentPoint));
323
324            weightedResidual = weightMatrixSqrt.operate(currentResiduals);
325            for (int i = 0; i < nR; i++) {
326                qtf[i] = weightedResidual[i];
327            }
328
329            // compute Qt.res
330            qTy(qtf);
331
332            // now we don't need Q anymore,
333            // so let jacobian contain the R matrix with its diagonal elements
334            for (int k = 0; k < solvedCols; ++k) {
335                int pk = permutation[k];
336                weightedJacobian[k][pk] = diagR[pk];
337            }
338
339            if (firstIteration) {
340                // scale the point according to the norms of the columns
341                // of the initial jacobian
342                xNorm = 0;
343                for (int k = 0; k < nC; ++k) {
344                    double dk = jacNorm[k];
345                    if (dk == 0) {
346                        dk = 1.0;
347                    }
348                    double xk = dk * currentPoint[k];
349                    xNorm  += xk * xk;
350                    diag[k] = dk;
351                }
352                xNorm = FastMath.sqrt(xNorm);
353
354                // initialize the step bound delta
355                delta = (xNorm == 0) ? initialStepBoundFactor : (initialStepBoundFactor * xNorm);
356            }
357
358            // check orthogonality between function vector and jacobian columns
359            double maxCosine = 0;
360            if (currentCost != 0) {
361                for (int j = 0; j < solvedCols; ++j) {
362                    int    pj = permutation[j];
363                    double s  = jacNorm[pj];
364                    if (s != 0) {
365                        double sum = 0;
366                        for (int i = 0; i <= j; ++i) {
367                            sum += weightedJacobian[i][pj] * qtf[i];
368                        }
369                        maxCosine = FastMath.max(maxCosine, FastMath.abs(sum) / (s * currentCost));
370                    }
371                }
372            }
373            if (maxCosine <= orthoTolerance) {
374                // Convergence has been reached.
375                setCost(currentCost);
376                // Update (deprecated) "point" field.
377                point = current.getPoint();
378                return current;
379            }
380
381            // rescale if necessary
382            for (int j = 0; j < nC; ++j) {
383                diag[j] = FastMath.max(diag[j], jacNorm[j]);
384            }
385
386            // Inner loop.
387            for (double ratio = 0; ratio < 1.0e-4;) {
388
389                // save the state
390                for (int j = 0; j < solvedCols; ++j) {
391                    int pj = permutation[j];
392                    oldX[pj] = currentPoint[pj];
393                }
394                final double previousCost = currentCost;
395                double[] tmpVec = weightedResidual;
396                weightedResidual = oldRes;
397                oldRes    = tmpVec;
398                tmpVec    = currentObjective;
399                currentObjective = oldObj;
400                oldObj    = tmpVec;
401
402                // determine the Levenberg-Marquardt parameter
403                determineLMParameter(qtf, delta, diag, work1, work2, work3);
404
405                // compute the new point and the norm of the evolution direction
406                double lmNorm = 0;
407                for (int j = 0; j < solvedCols; ++j) {
408                    int pj = permutation[j];
409                    lmDir[pj] = -lmDir[pj];
410                    currentPoint[pj] = oldX[pj] + lmDir[pj];
411                    double s = diag[pj] * lmDir[pj];
412                    lmNorm  += s * s;
413                }
414                lmNorm = FastMath.sqrt(lmNorm);
415                // on the first iteration, adjust the initial step bound.
416                if (firstIteration) {
417                    delta = FastMath.min(delta, lmNorm);
418                }
419
420                // Evaluate the function at x + p and calculate its norm.
421                currentObjective = computeObjectiveValue(currentPoint);
422                currentResiduals = computeResiduals(currentObjective);
423                current = new PointVectorValuePair(currentPoint, currentObjective);
424                currentCost = computeCost(currentResiduals);
425
426                // compute the scaled actual reduction
427                double actRed = -1.0;
428                if (0.1 * currentCost < previousCost) {
429                    double r = currentCost / previousCost;
430                    actRed = 1.0 - r * r;
431                }
432
433                // compute the scaled predicted reduction
434                // and the scaled directional derivative
435                for (int j = 0; j < solvedCols; ++j) {
436                    int pj = permutation[j];
437                    double dirJ = lmDir[pj];
438                    work1[j] = 0;
439                    for (int i = 0; i <= j; ++i) {
440                        work1[i] += weightedJacobian[i][pj] * dirJ;
441                    }
442                }
443                double coeff1 = 0;
444                for (int j = 0; j < solvedCols; ++j) {
445                    coeff1 += work1[j] * work1[j];
446                }
447                double pc2 = previousCost * previousCost;
448                coeff1 /= pc2;
449                double coeff2 = lmPar * lmNorm * lmNorm / pc2;
450                double preRed = coeff1 + 2 * coeff2;
451                double dirDer = -(coeff1 + coeff2);
452
453                // ratio of the actual to the predicted reduction
454                ratio = (preRed == 0) ? 0 : (actRed / preRed);
455
456                // update the step bound
457                if (ratio <= 0.25) {
458                    double tmp =
459                        (actRed < 0) ? (0.5 * dirDer / (dirDer + 0.5 * actRed)) : 0.5;
460                        if ((0.1 * currentCost >= previousCost) || (tmp < 0.1)) {
461                            tmp = 0.1;
462                        }
463                        delta = tmp * FastMath.min(delta, 10.0 * lmNorm);
464                        lmPar /= tmp;
465                } else if ((lmPar == 0) || (ratio >= 0.75)) {
466                    delta = 2 * lmNorm;
467                    lmPar *= 0.5;
468                }
469
470                // test for successful iteration.
471                if (ratio >= 1.0e-4) {
472                    // successful iteration, update the norm
473                    firstIteration = false;
474                    xNorm = 0;
475                    for (int k = 0; k < nC; ++k) {
476                        double xK = diag[k] * currentPoint[k];
477                        xNorm += xK * xK;
478                    }
479                    xNorm = FastMath.sqrt(xNorm);
480
481                    // tests for convergence.
482                    if (checker != null && checker.converged(iter, previous, current)) {
483                        setCost(currentCost);
484                        // Update (deprecated) "point" field.
485                        point = current.getPoint();
486                        return current;
487                    }
488                } else {
489                    // failed iteration, reset the previous values
490                    currentCost = previousCost;
491                    for (int j = 0; j < solvedCols; ++j) {
492                        int pj = permutation[j];
493                        currentPoint[pj] = oldX[pj];
494                    }
495                    tmpVec    = weightedResidual;
496                    weightedResidual = oldRes;
497                    oldRes    = tmpVec;
498                    tmpVec    = currentObjective;
499                    currentObjective = oldObj;
500                    oldObj    = tmpVec;
501                    // Reset "current" to previous values.
502                    current = new PointVectorValuePair(currentPoint, currentObjective);
503                }
504
505                // Default convergence criteria.
506                if ((FastMath.abs(actRed) <= costRelativeTolerance &&
507                     preRed <= costRelativeTolerance &&
508                     ratio <= 2.0) ||
509                    delta <= parRelativeTolerance * xNorm) {
510                    setCost(currentCost);
511                    // Update (deprecated) "point" field.
512                    point = current.getPoint();
513                    return current;
514                }
515
516                // tests for termination and stringent tolerances
517                // (2.2204e-16 is the machine epsilon for IEEE754)
518                if ((FastMath.abs(actRed) <= 2.2204e-16) && (preRed <= 2.2204e-16) && (ratio <= 2.0)) {
519                    throw new ConvergenceException(LocalizedFormats.TOO_SMALL_COST_RELATIVE_TOLERANCE,
520                                                   costRelativeTolerance);
521                } else if (delta <= 2.2204e-16 * xNorm) {
522                    throw new ConvergenceException(LocalizedFormats.TOO_SMALL_PARAMETERS_RELATIVE_TOLERANCE,
523                                                   parRelativeTolerance);
524                } else if (maxCosine <= 2.2204e-16)  {
525                    throw new ConvergenceException(LocalizedFormats.TOO_SMALL_ORTHOGONALITY_TOLERANCE,
526                                                   orthoTolerance);
527                }
528            }
529        }
530    }
531
532    /**
533     * Determine the Levenberg-Marquardt parameter.
534     * <p>This implementation is a translation in Java of the MINPACK
535     * <a href="http://www.netlib.org/minpack/lmpar.f">lmpar</a>
536     * routine.</p>
537     * <p>This method sets the lmPar and lmDir attributes.</p>
538     * <p>The authors of the original fortran function are:</p>
539     * <ul>
540     *   <li>Argonne National Laboratory. MINPACK project. March 1980</li>
541     *   <li>Burton  S. Garbow</li>
542     *   <li>Kenneth E. Hillstrom</li>
543     *   <li>Jorge   J. More</li>
544     * </ul>
545     * <p>Luc Maisonobe did the Java translation.</p>
546     *
547     * @param qy array containing qTy
548     * @param delta upper bound on the euclidean norm of diagR * lmDir
549     * @param diag diagonal matrix
550     * @param work1 work array
551     * @param work2 work array
552     * @param work3 work array
553     */
554    private void determineLMParameter(double[] qy, double delta, double[] diag,
555                                      double[] work1, double[] work2, double[] work3) {
556        final int nC = weightedJacobian[0].length;
557
558        // compute and store in x the gauss-newton direction, if the
559        // jacobian is rank-deficient, obtain a least squares solution
560        for (int j = 0; j < rank; ++j) {
561            lmDir[permutation[j]] = qy[j];
562        }
563        for (int j = rank; j < nC; ++j) {
564            lmDir[permutation[j]] = 0;
565        }
566        for (int k = rank - 1; k >= 0; --k) {
567            int pk = permutation[k];
568            double ypk = lmDir[pk] / diagR[pk];
569            for (int i = 0; i < k; ++i) {
570                lmDir[permutation[i]] -= ypk * weightedJacobian[i][pk];
571            }
572            lmDir[pk] = ypk;
573        }
574
575        // evaluate the function at the origin, and test
576        // for acceptance of the Gauss-Newton direction
577        double dxNorm = 0;
578        for (int j = 0; j < solvedCols; ++j) {
579            int pj = permutation[j];
580            double s = diag[pj] * lmDir[pj];
581            work1[pj] = s;
582            dxNorm += s * s;
583        }
584        dxNorm = FastMath.sqrt(dxNorm);
585        double fp = dxNorm - delta;
586        if (fp <= 0.1 * delta) {
587            lmPar = 0;
588            return;
589        }
590
591        // if the jacobian is not rank deficient, the Newton step provides
592        // a lower bound, parl, for the zero of the function,
593        // otherwise set this bound to zero
594        double sum2;
595        double parl = 0;
596        if (rank == solvedCols) {
597            for (int j = 0; j < solvedCols; ++j) {
598                int pj = permutation[j];
599                work1[pj] *= diag[pj] / dxNorm;
600            }
601            sum2 = 0;
602            for (int j = 0; j < solvedCols; ++j) {
603                int pj = permutation[j];
604                double sum = 0;
605                for (int i = 0; i < j; ++i) {
606                    sum += weightedJacobian[i][pj] * work1[permutation[i]];
607                }
608                double s = (work1[pj] - sum) / diagR[pj];
609                work1[pj] = s;
610                sum2 += s * s;
611            }
612            parl = fp / (delta * sum2);
613        }
614
615        // calculate an upper bound, paru, for the zero of the function
616        sum2 = 0;
617        for (int j = 0; j < solvedCols; ++j) {
618            int pj = permutation[j];
619            double sum = 0;
620            for (int i = 0; i <= j; ++i) {
621                sum += weightedJacobian[i][pj] * qy[i];
622            }
623            sum /= diag[pj];
624            sum2 += sum * sum;
625        }
626        double gNorm = FastMath.sqrt(sum2);
627        double paru = gNorm / delta;
628        if (paru == 0) {
629            // 2.2251e-308 is the smallest positive real for IEE754
630            paru = 2.2251e-308 / FastMath.min(delta, 0.1);
631        }
632
633        // if the input par lies outside of the interval (parl,paru),
634        // set par to the closer endpoint
635        lmPar = FastMath.min(paru, FastMath.max(lmPar, parl));
636        if (lmPar == 0) {
637            lmPar = gNorm / dxNorm;
638        }
639
640        for (int countdown = 10; countdown >= 0; --countdown) {
641
642            // evaluate the function at the current value of lmPar
643            if (lmPar == 0) {
644                lmPar = FastMath.max(2.2251e-308, 0.001 * paru);
645            }
646            double sPar = FastMath.sqrt(lmPar);
647            for (int j = 0; j < solvedCols; ++j) {
648                int pj = permutation[j];
649                work1[pj] = sPar * diag[pj];
650            }
651            determineLMDirection(qy, work1, work2, work3);
652
653            dxNorm = 0;
654            for (int j = 0; j < solvedCols; ++j) {
655                int pj = permutation[j];
656                double s = diag[pj] * lmDir[pj];
657                work3[pj] = s;
658                dxNorm += s * s;
659            }
660            dxNorm = FastMath.sqrt(dxNorm);
661            double previousFP = fp;
662            fp = dxNorm - delta;
663
664            // if the function is small enough, accept the current value
665            // of lmPar, also test for the exceptional cases where parl is zero
666            if ((FastMath.abs(fp) <= 0.1 * delta) ||
667                    ((parl == 0) && (fp <= previousFP) && (previousFP < 0))) {
668                return;
669            }
670
671            // compute the Newton correction
672            for (int j = 0; j < solvedCols; ++j) {
673                int pj = permutation[j];
674                work1[pj] = work3[pj] * diag[pj] / dxNorm;
675            }
676            for (int j = 0; j < solvedCols; ++j) {
677                int pj = permutation[j];
678                work1[pj] /= work2[j];
679                double tmp = work1[pj];
680                for (int i = j + 1; i < solvedCols; ++i) {
681                    work1[permutation[i]] -= weightedJacobian[i][pj] * tmp;
682                }
683            }
684            sum2 = 0;
685            for (int j = 0; j < solvedCols; ++j) {
686                double s = work1[permutation[j]];
687                sum2 += s * s;
688            }
689            double correction = fp / (delta * sum2);
690
691            // depending on the sign of the function, update parl or paru.
692            if (fp > 0) {
693                parl = FastMath.max(parl, lmPar);
694            } else if (fp < 0) {
695                paru = FastMath.min(paru, lmPar);
696            }
697
698            // compute an improved estimate for lmPar
699            lmPar = FastMath.max(parl, lmPar + correction);
700
701        }
702    }
703
704    /**
705     * Solve a*x = b and d*x = 0 in the least squares sense.
706     * <p>This implementation is a translation in Java of the MINPACK
707     * <a href="http://www.netlib.org/minpack/qrsolv.f">qrsolv</a>
708     * routine.</p>
709     * <p>This method sets the lmDir and lmDiag attributes.</p>
710     * <p>The authors of the original fortran function are:</p>
711     * <ul>
712     *   <li>Argonne National Laboratory. MINPACK project. March 1980</li>
713     *   <li>Burton  S. Garbow</li>
714     *   <li>Kenneth E. Hillstrom</li>
715     *   <li>Jorge   J. More</li>
716     * </ul>
717     * <p>Luc Maisonobe did the Java translation.</p>
718     *
719     * @param qy array containing qTy
720     * @param diag diagonal matrix
721     * @param lmDiag diagonal elements associated with lmDir
722     * @param work work array
723     */
724    private void determineLMDirection(double[] qy, double[] diag,
725                                      double[] lmDiag, double[] work) {
726
727        // copy R and Qty to preserve input and initialize s
728        //  in particular, save the diagonal elements of R in lmDir
729        for (int j = 0; j < solvedCols; ++j) {
730            int pj = permutation[j];
731            for (int i = j + 1; i < solvedCols; ++i) {
732                weightedJacobian[i][pj] = weightedJacobian[j][permutation[i]];
733            }
734            lmDir[j] = diagR[pj];
735            work[j]  = qy[j];
736        }
737
738        // eliminate the diagonal matrix d using a Givens rotation
739        for (int j = 0; j < solvedCols; ++j) {
740
741            // prepare the row of d to be eliminated, locating the
742            // diagonal element using p from the Q.R. factorization
743            int pj = permutation[j];
744            double dpj = diag[pj];
745            if (dpj != 0) {
746                Arrays.fill(lmDiag, j + 1, lmDiag.length, 0);
747            }
748            lmDiag[j] = dpj;
749
750            //  the transformations to eliminate the row of d
751            // modify only a single element of Qty
752            // beyond the first n, which is initially zero.
753            double qtbpj = 0;
754            for (int k = j; k < solvedCols; ++k) {
755                int pk = permutation[k];
756
757                // determine a Givens rotation which eliminates the
758                // appropriate element in the current row of d
759                if (lmDiag[k] != 0) {
760
761                    final double sin;
762                    final double cos;
763                    double rkk = weightedJacobian[k][pk];
764                    if (FastMath.abs(rkk) < FastMath.abs(lmDiag[k])) {
765                        final double cotan = rkk / lmDiag[k];
766                        sin   = 1.0 / FastMath.sqrt(1.0 + cotan * cotan);
767                        cos   = sin * cotan;
768                    } else {
769                        final double tan = lmDiag[k] / rkk;
770                        cos = 1.0 / FastMath.sqrt(1.0 + tan * tan);
771                        sin = cos * tan;
772                    }
773
774                    // compute the modified diagonal element of R and
775                    // the modified element of (Qty,0)
776                    weightedJacobian[k][pk] = cos * rkk + sin * lmDiag[k];
777                    final double temp = cos * work[k] + sin * qtbpj;
778                    qtbpj = -sin * work[k] + cos * qtbpj;
779                    work[k] = temp;
780
781                    // accumulate the tranformation in the row of s
782                    for (int i = k + 1; i < solvedCols; ++i) {
783                        double rik = weightedJacobian[i][pk];
784                        final double temp2 = cos * rik + sin * lmDiag[i];
785                        lmDiag[i] = -sin * rik + cos * lmDiag[i];
786                        weightedJacobian[i][pk] = temp2;
787                    }
788                }
789            }
790
791            // store the diagonal element of s and restore
792            // the corresponding diagonal element of R
793            lmDiag[j] = weightedJacobian[j][permutation[j]];
794            weightedJacobian[j][permutation[j]] = lmDir[j];
795        }
796
797        // solve the triangular system for z, if the system is
798        // singular, then obtain a least squares solution
799        int nSing = solvedCols;
800        for (int j = 0; j < solvedCols; ++j) {
801            if ((lmDiag[j] == 0) && (nSing == solvedCols)) {
802                nSing = j;
803            }
804            if (nSing < solvedCols) {
805                work[j] = 0;
806            }
807        }
808        if (nSing > 0) {
809            for (int j = nSing - 1; j >= 0; --j) {
810                int pj = permutation[j];
811                double sum = 0;
812                for (int i = j + 1; i < nSing; ++i) {
813                    sum += weightedJacobian[i][pj] * work[i];
814                }
815                work[j] = (work[j] - sum) / lmDiag[j];
816            }
817        }
818
819        // permute the components of z back to components of lmDir
820        for (int j = 0; j < lmDir.length; ++j) {
821            lmDir[permutation[j]] = work[j];
822        }
823    }
824
825    /**
826     * Decompose a matrix A as A.P = Q.R using Householder transforms.
827     * <p>As suggested in the P. Lascaux and R. Theodor book
828     * <i>Analyse num&eacute;rique matricielle appliqu&eacute;e &agrave;
829     * l'art de l'ing&eacute;nieur</i> (Masson, 1986), instead of representing
830     * the Householder transforms with u<sub>k</sub> unit vectors such that:
831     * <pre>
832     * H<sub>k</sub> = I - 2u<sub>k</sub>.u<sub>k</sub><sup>t</sup>
833     * </pre>
834     * we use <sub>k</sub> non-unit vectors such that:
835     * <pre>
836     * H<sub>k</sub> = I - beta<sub>k</sub>v<sub>k</sub>.v<sub>k</sub><sup>t</sup>
837     * </pre>
838     * where v<sub>k</sub> = a<sub>k</sub> - alpha<sub>k</sub> e<sub>k</sub>.
839     * The beta<sub>k</sub> coefficients are provided upon exit as recomputing
840     * them from the v<sub>k</sub> vectors would be costly.</p>
841     * <p>This decomposition handles rank deficient cases since the tranformations
842     * are performed in non-increasing columns norms order thanks to columns
843     * pivoting. The diagonal elements of the R matrix are therefore also in
844     * non-increasing absolute values order.</p>
845     *
846     * @param jacobian Weighted Jacobian matrix at the current point.
847     * @exception ConvergenceException if the decomposition cannot be performed
848     */
849    private void qrDecomposition(RealMatrix jacobian) throws ConvergenceException {
850        // Code in this class assumes that the weighted Jacobian is -(W^(1/2) J),
851        // hence the multiplication by -1.
852        weightedJacobian = jacobian.scalarMultiply(-1).getData();
853
854        final int nR = weightedJacobian.length;
855        final int nC = weightedJacobian[0].length;
856
857        // initializations
858        for (int k = 0; k < nC; ++k) {
859            permutation[k] = k;
860            double norm2 = 0;
861            for (int i = 0; i < nR; ++i) {
862                double akk = weightedJacobian[i][k];
863                norm2 += akk * akk;
864            }
865            jacNorm[k] = FastMath.sqrt(norm2);
866        }
867
868        // transform the matrix column after column
869        for (int k = 0; k < nC; ++k) {
870
871            // select the column with the greatest norm on active components
872            int nextColumn = -1;
873            double ak2 = Double.NEGATIVE_INFINITY;
874            for (int i = k; i < nC; ++i) {
875                double norm2 = 0;
876                for (int j = k; j < nR; ++j) {
877                    double aki = weightedJacobian[j][permutation[i]];
878                    norm2 += aki * aki;
879                }
880                if (Double.isInfinite(norm2) || Double.isNaN(norm2)) {
881                    throw new ConvergenceException(LocalizedFormats.UNABLE_TO_PERFORM_QR_DECOMPOSITION_ON_JACOBIAN,
882                                                   nR, nC);
883                }
884                if (norm2 > ak2) {
885                    nextColumn = i;
886                    ak2        = norm2;
887                }
888            }
889            if (ak2 <= qrRankingThreshold) {
890                rank = k;
891                return;
892            }
893            int pk                  = permutation[nextColumn];
894            permutation[nextColumn] = permutation[k];
895            permutation[k]          = pk;
896
897            // choose alpha such that Hk.u = alpha ek
898            double akk   = weightedJacobian[k][pk];
899            double alpha = (akk > 0) ? -FastMath.sqrt(ak2) : FastMath.sqrt(ak2);
900            double betak = 1.0 / (ak2 - akk * alpha);
901            beta[pk]     = betak;
902
903            // transform the current column
904            diagR[pk]        = alpha;
905            weightedJacobian[k][pk] -= alpha;
906
907            // transform the remaining columns
908            for (int dk = nC - 1 - k; dk > 0; --dk) {
909                double gamma = 0;
910                for (int j = k; j < nR; ++j) {
911                    gamma += weightedJacobian[j][pk] * weightedJacobian[j][permutation[k + dk]];
912                }
913                gamma *= betak;
914                for (int j = k; j < nR; ++j) {
915                    weightedJacobian[j][permutation[k + dk]] -= gamma * weightedJacobian[j][pk];
916                }
917            }
918        }
919        rank = solvedCols;
920    }
921
922    /**
923     * Compute the product Qt.y for some Q.R. decomposition.
924     *
925     * @param y vector to multiply (will be overwritten with the result)
926     */
927    private void qTy(double[] y) {
928        final int nR = weightedJacobian.length;
929        final int nC = weightedJacobian[0].length;
930
931        for (int k = 0; k < nC; ++k) {
932            int pk = permutation[k];
933            double gamma = 0;
934            for (int i = k; i < nR; ++i) {
935                gamma += weightedJacobian[i][pk] * y[i];
936            }
937            gamma *= beta[pk];
938            for (int i = k; i < nR; ++i) {
939                y[i] -= gamma * weightedJacobian[i][pk];
940            }
941        }
942    }
943}