001/* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017 018package org.apache.commons.math3.optimization.linear; 019 020import java.util.ArrayList; 021import java.util.List; 022 023import org.apache.commons.math3.exception.MaxCountExceededException; 024import org.apache.commons.math3.optimization.PointValuePair; 025import org.apache.commons.math3.util.Precision; 026 027 028/** 029 * Solves a linear problem using the Two-Phase Simplex Method. 030 * 031 * @deprecated As of 3.1 (to be removed in 4.0). 032 * @since 2.0 033 */ 034@Deprecated 035public class SimplexSolver extends AbstractLinearOptimizer { 036 037 /** Default amount of error to accept for algorithm convergence. */ 038 private static final double DEFAULT_EPSILON = 1.0e-6; 039 040 /** Default amount of error to accept in floating point comparisons (as ulps). */ 041 private static final int DEFAULT_ULPS = 10; 042 043 /** Amount of error to accept for algorithm convergence. */ 044 private final double epsilon; 045 046 /** Amount of error to accept in floating point comparisons (as ulps). */ 047 private final int maxUlps; 048 049 /** 050 * Build a simplex solver with default settings. 051 */ 052 public SimplexSolver() { 053 this(DEFAULT_EPSILON, DEFAULT_ULPS); 054 } 055 056 /** 057 * Build a simplex solver with a specified accepted amount of error 058 * @param epsilon the amount of error to accept for algorithm convergence 059 * @param maxUlps amount of error to accept in floating point comparisons 060 */ 061 public SimplexSolver(final double epsilon, final int maxUlps) { 062 this.epsilon = epsilon; 063 this.maxUlps = maxUlps; 064 } 065 066 /** 067 * Returns the column with the most negative coefficient in the objective function row. 068 * @param tableau simple tableau for the problem 069 * @return column with the most negative coefficient 070 */ 071 private Integer getPivotColumn(SimplexTableau tableau) { 072 double minValue = 0; 073 Integer minPos = null; 074 for (int i = tableau.getNumObjectiveFunctions(); i < tableau.getWidth() - 1; i++) { 075 final double entry = tableau.getEntry(0, i); 076 // check if the entry is strictly smaller than the current minimum 077 // do not use a ulp/epsilon check 078 if (entry < minValue) { 079 minValue = entry; 080 minPos = i; 081 } 082 } 083 return minPos; 084 } 085 086 /** 087 * Returns the row with the minimum ratio as given by the minimum ratio test (MRT). 088 * @param tableau simple tableau for the problem 089 * @param col the column to test the ratio of. See {@link #getPivotColumn(SimplexTableau)} 090 * @return row with the minimum ratio 091 */ 092 private Integer getPivotRow(SimplexTableau tableau, final int col) { 093 // create a list of all the rows that tie for the lowest score in the minimum ratio test 094 List<Integer> minRatioPositions = new ArrayList<Integer>(); 095 double minRatio = Double.MAX_VALUE; 096 for (int i = tableau.getNumObjectiveFunctions(); i < tableau.getHeight(); i++) { 097 final double rhs = tableau.getEntry(i, tableau.getWidth() - 1); 098 final double entry = tableau.getEntry(i, col); 099 100 if (Precision.compareTo(entry, 0d, maxUlps) > 0) { 101 final double ratio = rhs / entry; 102 // check if the entry is strictly equal to the current min ratio 103 // do not use a ulp/epsilon check 104 final int cmp = Double.compare(ratio, minRatio); 105 if (cmp == 0) { 106 minRatioPositions.add(i); 107 } else if (cmp < 0) { 108 minRatio = ratio; 109 minRatioPositions = new ArrayList<Integer>(); 110 minRatioPositions.add(i); 111 } 112 } 113 } 114 115 if (minRatioPositions.size() == 0) { 116 return null; 117 } else if (minRatioPositions.size() > 1) { 118 // there's a degeneracy as indicated by a tie in the minimum ratio test 119 120 // 1. check if there's an artificial variable that can be forced out of the basis 121 if (tableau.getNumArtificialVariables() > 0) { 122 for (Integer row : minRatioPositions) { 123 for (int i = 0; i < tableau.getNumArtificialVariables(); i++) { 124 int column = i + tableau.getArtificialVariableOffset(); 125 final double entry = tableau.getEntry(row, column); 126 if (Precision.equals(entry, 1d, maxUlps) && row.equals(tableau.getBasicRow(column))) { 127 return row; 128 } 129 } 130 } 131 } 132 133 // 2. apply Bland's rule to prevent cycling: 134 // take the row for which the corresponding basic variable has the smallest index 135 // 136 // see http://www.stanford.edu/class/msande310/blandrule.pdf 137 // see http://en.wikipedia.org/wiki/Bland%27s_rule (not equivalent to the above paper) 138 // 139 // Additional heuristic: if we did not get a solution after half of maxIterations 140 // revert to the simple case of just returning the top-most row 141 // This heuristic is based on empirical data gathered while investigating MATH-828. 142 if (getIterations() < getMaxIterations() / 2) { 143 Integer minRow = null; 144 int minIndex = tableau.getWidth(); 145 final int varStart = tableau.getNumObjectiveFunctions(); 146 final int varEnd = tableau.getWidth() - 1; 147 for (Integer row : minRatioPositions) { 148 for (int i = varStart; i < varEnd && !row.equals(minRow); i++) { 149 final Integer basicRow = tableau.getBasicRow(i); 150 if (basicRow != null && basicRow.equals(row) && i < minIndex) { 151 minIndex = i; 152 minRow = row; 153 } 154 } 155 } 156 return minRow; 157 } 158 } 159 return minRatioPositions.get(0); 160 } 161 162 /** 163 * Runs one iteration of the Simplex method on the given model. 164 * @param tableau simple tableau for the problem 165 * @throws MaxCountExceededException if the maximal iteration count has been exceeded 166 * @throws UnboundedSolutionException if the model is found not to have a bounded solution 167 */ 168 protected void doIteration(final SimplexTableau tableau) 169 throws MaxCountExceededException, UnboundedSolutionException { 170 171 incrementIterationsCounter(); 172 173 Integer pivotCol = getPivotColumn(tableau); 174 Integer pivotRow = getPivotRow(tableau, pivotCol); 175 if (pivotRow == null) { 176 throw new UnboundedSolutionException(); 177 } 178 179 // set the pivot element to 1 180 double pivotVal = tableau.getEntry(pivotRow, pivotCol); 181 tableau.divideRow(pivotRow, pivotVal); 182 183 // set the rest of the pivot column to 0 184 for (int i = 0; i < tableau.getHeight(); i++) { 185 if (i != pivotRow) { 186 final double multiplier = tableau.getEntry(i, pivotCol); 187 tableau.subtractRow(i, pivotRow, multiplier); 188 } 189 } 190 } 191 192 /** 193 * Solves Phase 1 of the Simplex method. 194 * @param tableau simple tableau for the problem 195 * @throws MaxCountExceededException if the maximal iteration count has been exceeded 196 * @throws UnboundedSolutionException if the model is found not to have a bounded solution 197 * @throws NoFeasibleSolutionException if there is no feasible solution 198 */ 199 protected void solvePhase1(final SimplexTableau tableau) 200 throws MaxCountExceededException, UnboundedSolutionException, NoFeasibleSolutionException { 201 202 // make sure we're in Phase 1 203 if (tableau.getNumArtificialVariables() == 0) { 204 return; 205 } 206 207 while (!tableau.isOptimal()) { 208 doIteration(tableau); 209 } 210 211 // if W is not zero then we have no feasible solution 212 if (!Precision.equals(tableau.getEntry(0, tableau.getRhsOffset()), 0d, epsilon)) { 213 throw new NoFeasibleSolutionException(); 214 } 215 } 216 217 /** {@inheritDoc} */ 218 @Override 219 public PointValuePair doOptimize() 220 throws MaxCountExceededException, UnboundedSolutionException, NoFeasibleSolutionException { 221 final SimplexTableau tableau = 222 new SimplexTableau(getFunction(), 223 getConstraints(), 224 getGoalType(), 225 restrictToNonNegative(), 226 epsilon, 227 maxUlps); 228 229 solvePhase1(tableau); 230 tableau.dropPhase1Objective(); 231 232 while (!tableau.isOptimal()) { 233 doIteration(tableau); 234 } 235 return tableau.getSolution(); 236 } 237 238}