001/* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017package org.apache.commons.math3.random; 018 019import org.apache.commons.math3.exception.NotStrictlyPositiveException; 020import org.apache.commons.math3.util.FastMath; 021 022/** 023 * Abstract class implementing the {@link RandomGenerator} interface. 024 * Default implementations for all methods other than {@link #nextDouble()} and 025 * {@link #setSeed(long)} are provided. 026 * <p> 027 * All data generation methods are based on {@code code nextDouble()}. 028 * Concrete implementations <strong>must</strong> override 029 * this method and <strong>should</strong> provide better / more 030 * performant implementations of the other methods if the underlying PRNG 031 * supplies them.</p> 032 * 033 * @since 1.1 034 */ 035public abstract class AbstractRandomGenerator implements RandomGenerator { 036 037 /** 038 * Cached random normal value. The default implementation for 039 * {@link #nextGaussian} generates pairs of values and this field caches the 040 * second value so that the full algorithm is not executed for every 041 * activation. The value {@code Double.NaN} signals that there is 042 * no cached value. Use {@link #clear} to clear the cached value. 043 */ 044 private double cachedNormalDeviate = Double.NaN; 045 046 /** 047 * Construct a RandomGenerator. 048 */ 049 public AbstractRandomGenerator() { 050 super(); 051 052 } 053 054 /** 055 * Clears the cache used by the default implementation of 056 * {@link #nextGaussian}. Implementations that do not override the 057 * default implementation of {@code nextGaussian} should call this 058 * method in the implementation of {@link #setSeed(long)} 059 */ 060 public void clear() { 061 cachedNormalDeviate = Double.NaN; 062 } 063 064 /** {@inheritDoc} */ 065 public void setSeed(int seed) { 066 setSeed((long) seed); 067 } 068 069 /** {@inheritDoc} */ 070 public void setSeed(int[] seed) { 071 // the following number is the largest prime that fits in 32 bits (it is 2^32 - 5) 072 final long prime = 4294967291l; 073 074 long combined = 0l; 075 for (int s : seed) { 076 combined = combined * prime + s; 077 } 078 setSeed(combined); 079 } 080 081 /** 082 * Sets the seed of the underlying random number generator using a 083 * {@code long} seed. Sequences of values generated starting with the 084 * same seeds should be identical. 085 * <p> 086 * Implementations that do not override the default implementation of 087 * {@code nextGaussian} should include a call to {@link #clear} in the 088 * implementation of this method.</p> 089 * 090 * @param seed the seed value 091 */ 092 public abstract void setSeed(long seed); 093 094 /** 095 * Generates random bytes and places them into a user-supplied 096 * byte array. The number of random bytes produced is equal to 097 * the length of the byte array. 098 * <p> 099 * The default implementation fills the array with bytes extracted from 100 * random integers generated using {@link #nextInt}.</p> 101 * 102 * @param bytes the non-null byte array in which to put the 103 * random bytes 104 */ 105 public void nextBytes(byte[] bytes) { 106 int bytesOut = 0; 107 while (bytesOut < bytes.length) { 108 int randInt = nextInt(); 109 for (int i = 0; i < 3; i++) { 110 if ( i > 0) { 111 randInt >>= 8; 112 } 113 bytes[bytesOut++] = (byte) randInt; 114 if (bytesOut == bytes.length) { 115 return; 116 } 117 } 118 } 119 } 120 121 /** 122 * Returns the next pseudorandom, uniformly distributed {@code int} 123 * value from this random number generator's sequence. 124 * All 2<font size="-1"><sup>32</sup></font> possible {@code int} values 125 * should be produced with (approximately) equal probability. 126 * <p> 127 * The default implementation provided here returns 128 * <pre> 129 * <code>(int) (nextDouble() * Integer.MAX_VALUE)</code> 130 * </pre></p> 131 * 132 * @return the next pseudorandom, uniformly distributed {@code int} 133 * value from this random number generator's sequence 134 */ 135 public int nextInt() { 136 return (int) ((2d * nextDouble() - 1d) * Integer.MAX_VALUE); 137 } 138 139 /** 140 * Returns a pseudorandom, uniformly distributed {@code int} value 141 * between 0 (inclusive) and the specified value (exclusive), drawn from 142 * this random number generator's sequence. 143 * <p> 144 * The default implementation returns 145 * <pre> 146 * <code>(int) (nextDouble() * n</code> 147 * </pre></p> 148 * 149 * @param n the bound on the random number to be returned. Must be 150 * positive. 151 * @return a pseudorandom, uniformly distributed {@code int} 152 * value between 0 (inclusive) and n (exclusive). 153 * @throws NotStrictlyPositiveException if {@code n <= 0}. 154 */ 155 public int nextInt(int n) { 156 if (n <= 0 ) { 157 throw new NotStrictlyPositiveException(n); 158 } 159 int result = (int) (nextDouble() * n); 160 return result < n ? result : n - 1; 161 } 162 163 /** 164 * Returns the next pseudorandom, uniformly distributed {@code long} 165 * value from this random number generator's sequence. All 166 * 2<font size="-1"><sup>64</sup></font> possible {@code long} values 167 * should be produced with (approximately) equal probability. 168 * <p> 169 * The default implementation returns 170 * <pre> 171 * <code>(long) (nextDouble() * Long.MAX_VALUE)</code> 172 * </pre></p> 173 * 174 * @return the next pseudorandom, uniformly distributed {@code long} 175 *value from this random number generator's sequence 176 */ 177 public long nextLong() { 178 return (long) ((2d * nextDouble() - 1d) * Long.MAX_VALUE); 179 } 180 181 /** 182 * Returns the next pseudorandom, uniformly distributed 183 * {@code boolean} value from this random number generator's 184 * sequence. 185 * <p> 186 * The default implementation returns 187 * <pre> 188 * <code>nextDouble() <= 0.5</code> 189 * </pre></p> 190 * 191 * @return the next pseudorandom, uniformly distributed 192 * {@code boolean} value from this random number generator's 193 * sequence 194 */ 195 public boolean nextBoolean() { 196 return nextDouble() <= 0.5; 197 } 198 199 /** 200 * Returns the next pseudorandom, uniformly distributed {@code float} 201 * value between {@code 0.0} and {@code 1.0} from this random 202 * number generator's sequence. 203 * <p> 204 * The default implementation returns 205 * <pre> 206 * <code>(float) nextDouble() </code> 207 * </pre></p> 208 * 209 * @return the next pseudorandom, uniformly distributed {@code float} 210 * value between {@code 0.0} and {@code 1.0} from this 211 * random number generator's sequence 212 */ 213 public float nextFloat() { 214 return (float) nextDouble(); 215 } 216 217 /** 218 * Returns the next pseudorandom, uniformly distributed 219 * {@code double} value between {@code 0.0} and 220 * {@code 1.0} from this random number generator's sequence. 221 * <p> 222 * This method provides the underlying source of random data used by the 223 * other methods.</p> 224 * 225 * @return the next pseudorandom, uniformly distributed 226 * {@code double} value between {@code 0.0} and 227 * {@code 1.0} from this random number generator's sequence 228 */ 229 public abstract double nextDouble(); 230 231 /** 232 * Returns the next pseudorandom, Gaussian ("normally") distributed 233 * {@code double} value with mean {@code 0.0} and standard 234 * deviation {@code 1.0} from this random number generator's sequence. 235 * <p> 236 * The default implementation uses the <em>Polar Method</em> 237 * due to G.E.P. Box, M.E. Muller and G. Marsaglia, as described in 238 * D. Knuth, <u>The Art of Computer Programming</u>, 3.4.1C.</p> 239 * <p> 240 * The algorithm generates a pair of independent random values. One of 241 * these is cached for reuse, so the full algorithm is not executed on each 242 * activation. Implementations that do not override this method should 243 * make sure to call {@link #clear} to clear the cached value in the 244 * implementation of {@link #setSeed(long)}.</p> 245 * 246 * @return the next pseudorandom, Gaussian ("normally") distributed 247 * {@code double} value with mean {@code 0.0} and 248 * standard deviation {@code 1.0} from this random number 249 * generator's sequence 250 */ 251 public double nextGaussian() { 252 if (!Double.isNaN(cachedNormalDeviate)) { 253 double dev = cachedNormalDeviate; 254 cachedNormalDeviate = Double.NaN; 255 return dev; 256 } 257 double v1 = 0; 258 double v2 = 0; 259 double s = 1; 260 while (s >=1 ) { 261 v1 = 2 * nextDouble() - 1; 262 v2 = 2 * nextDouble() - 1; 263 s = v1 * v1 + v2 * v2; 264 } 265 if (s != 0) { 266 s = FastMath.sqrt(-2 * FastMath.log(s) / s); 267 } 268 cachedNormalDeviate = v2 * s; 269 return v1 * s; 270 } 271}