001/* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017package org.apache.commons.math3.transform; 018 019/** 020 * This enumeration defines the various types of normalizations that can be 021 * applied to discrete sine transforms (DST). The exact definition of these 022 * normalizations is detailed below. 023 * 024 * @see FastSineTransformer 025 * @since 3.0 026 */ 027public enum DstNormalization { 028 /** 029 * Should be passed to the constructor of {@link FastSineTransformer} to 030 * use the <em>standard</em> normalization convention. The standard DST-I 031 * normalization convention is defined as follows 032 * <ul> 033 * <li>forward transform: y<sub>n</sub> = ∑<sub>k=0</sub><sup>N-1</sup> 034 * x<sub>k</sub> sin(π nk / N),</li> 035 * <li>inverse transform: x<sub>k</sub> = (2 / N) 036 * ∑<sub>n=0</sub><sup>N-1</sup> y<sub>n</sub> sin(π nk / N),</li> 037 * </ul> 038 * where N is the size of the data sample, and x<sub>0</sub> = 0. 039 */ 040 STANDARD_DST_I, 041 042 /** 043 * Should be passed to the constructor of {@link FastSineTransformer} to 044 * use the <em>orthogonal</em> normalization convention. The orthogonal 045 * DCT-I normalization convention is defined as follows 046 * <ul> 047 * <li>Forward transform: y<sub>n</sub> = √(2 / N) 048 * ∑<sub>k=0</sub><sup>N-1</sup> x<sub>k</sub> sin(π nk / N),</li> 049 * <li>Inverse transform: x<sub>k</sub> = √(2 / N) 050 * ∑<sub>n=0</sub><sup>N-1</sup> y<sub>n</sub> sin(π nk / N),</li> 051 * </ul> 052 * which makes the transform orthogonal. N is the size of the data sample, 053 * and x<sub>0</sub> = 0. 054 */ 055 ORTHOGONAL_DST_I 056}