001/*
002 * Licensed to the Apache Software Foundation (ASF) under one or more
003 * contributor license agreements.  See the NOTICE file distributed with
004 * this work for additional information regarding copyright ownership.
005 * The ASF licenses this file to You under the Apache License, Version 2.0
006 * (the "License"); you may not use this file except in compliance with
007 * the License.  You may obtain a copy of the License at
008 *
009 *      http://www.apache.org/licenses/LICENSE-2.0
010 *
011 * Unless required by applicable law or agreed to in writing, software
012 * distributed under the License is distributed on an "AS IS" BASIS,
013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
014 * See the License for the specific language governing permissions and
015 * limitations under the License.
016 */
017package org.apache.commons.math3.transform;
018
019import java.io.Serializable;
020
021import org.apache.commons.math3.analysis.FunctionUtils;
022import org.apache.commons.math3.analysis.UnivariateFunction;
023import org.apache.commons.math3.complex.Complex;
024import org.apache.commons.math3.exception.MathIllegalArgumentException;
025import org.apache.commons.math3.exception.util.LocalizedFormats;
026import org.apache.commons.math3.util.ArithmeticUtils;
027import org.apache.commons.math3.util.FastMath;
028
029/**
030 * Implements the Fast Cosine Transform for transformation of one-dimensional
031 * real data sets. For reference, see James S. Walker, <em>Fast Fourier
032 * Transforms</em>, chapter 3 (ISBN 0849371635).
033 * <p>
034 * There are several variants of the discrete cosine transform. The present
035 * implementation corresponds to DCT-I, with various normalization conventions,
036 * which are specified by the parameter {@link DctNormalization}.
037 * <p>
038 * DCT-I is equivalent to DFT of an <em>even extension</em> of the data series.
039 * More precisely, if x<sub>0</sub>, &hellip;, x<sub>N-1</sub> is the data set
040 * to be cosine transformed, the extended data set
041 * x<sub>0</sub><sup>&#35;</sup>, &hellip;, x<sub>2N-3</sub><sup>&#35;</sup>
042 * is defined as follows
043 * <ul>
044 * <li>x<sub>k</sub><sup>&#35;</sup> = x<sub>k</sub> if 0 &le; k &lt; N,</li>
045 * <li>x<sub>k</sub><sup>&#35;</sup> = x<sub>2N-2-k</sub>
046 * if N &le; k &lt; 2N - 2.</li>
047 * </ul>
048 * <p>
049 * Then, the standard DCT-I y<sub>0</sub>, &hellip;, y<sub>N-1</sub> of the real
050 * data set x<sub>0</sub>, &hellip;, x<sub>N-1</sub> is equal to <em>half</em>
051 * of the N first elements of the DFT of the extended data set
052 * x<sub>0</sub><sup>&#35;</sup>, &hellip;, x<sub>2N-3</sub><sup>&#35;</sup>
053 * <br/>
054 * y<sub>n</sub> = (1 / 2) &sum;<sub>k=0</sub><sup>2N-3</sup>
055 * x<sub>k</sub><sup>&#35;</sup> exp[-2&pi;i nk / (2N - 2)]
056 * &nbsp;&nbsp;&nbsp;&nbsp;k = 0, &hellip;, N-1.
057 * <p>
058 * The present implementation of the discrete cosine transform as a fast cosine
059 * transform requires the length of the data set to be a power of two plus one
060 * (N&nbsp;=&nbsp;2<sup>n</sup>&nbsp;+&nbsp;1). Besides, it implicitly assumes
061 * that the sampled function is even.
062 *
063 * @since 1.2
064 */
065public class FastCosineTransformer implements RealTransformer, Serializable {
066
067    /** Serializable version identifier. */
068    static final long serialVersionUID = 20120212L;
069
070    /** The type of DCT to be performed. */
071    private final DctNormalization normalization;
072
073    /**
074     * Creates a new instance of this class, with various normalization
075     * conventions.
076     *
077     * @param normalization the type of normalization to be applied to the
078     * transformed data
079     */
080    public FastCosineTransformer(final DctNormalization normalization) {
081        this.normalization = normalization;
082    }
083
084    /**
085     * {@inheritDoc}
086     *
087     * @throws MathIllegalArgumentException if the length of the data array is
088     * not a power of two plus one
089     */
090    public double[] transform(final double[] f, final TransformType type)
091      throws MathIllegalArgumentException {
092        if (type == TransformType.FORWARD) {
093            if (normalization == DctNormalization.ORTHOGONAL_DCT_I) {
094                final double s = FastMath.sqrt(2.0 / (f.length - 1));
095                return TransformUtils.scaleArray(fct(f), s);
096            }
097            return fct(f);
098        }
099        final double s2 = 2.0 / (f.length - 1);
100        final double s1;
101        if (normalization == DctNormalization.ORTHOGONAL_DCT_I) {
102            s1 = FastMath.sqrt(s2);
103        } else {
104            s1 = s2;
105        }
106        return TransformUtils.scaleArray(fct(f), s1);
107    }
108
109    /**
110     * {@inheritDoc}
111     *
112     * @throws org.apache.commons.math3.exception.NonMonotonicSequenceException
113     * if the lower bound is greater than, or equal to the upper bound
114     * @throws org.apache.commons.math3.exception.NotStrictlyPositiveException
115     * if the number of sample points is negative
116     * @throws MathIllegalArgumentException if the number of sample points is
117     * not a power of two plus one
118     */
119    public double[] transform(final UnivariateFunction f,
120        final double min, final double max, final int n,
121        final TransformType type) throws MathIllegalArgumentException {
122
123        final double[] data = FunctionUtils.sample(f, min, max, n);
124        return transform(data, type);
125    }
126
127    /**
128     * Perform the FCT algorithm (including inverse).
129     *
130     * @param f the real data array to be transformed
131     * @return the real transformed array
132     * @throws MathIllegalArgumentException if the length of the data array is
133     * not a power of two plus one
134     */
135    protected double[] fct(double[] f)
136        throws MathIllegalArgumentException {
137
138        final double[] transformed = new double[f.length];
139
140        final int n = f.length - 1;
141        if (!ArithmeticUtils.isPowerOfTwo(n)) {
142            throw new MathIllegalArgumentException(
143                LocalizedFormats.NOT_POWER_OF_TWO_PLUS_ONE,
144                Integer.valueOf(f.length));
145        }
146        if (n == 1) {       // trivial case
147            transformed[0] = 0.5 * (f[0] + f[1]);
148            transformed[1] = 0.5 * (f[0] - f[1]);
149            return transformed;
150        }
151
152        // construct a new array and perform FFT on it
153        final double[] x = new double[n];
154        x[0] = 0.5 * (f[0] + f[n]);
155        x[n >> 1] = f[n >> 1];
156        // temporary variable for transformed[1]
157        double t1 = 0.5 * (f[0] - f[n]);
158        for (int i = 1; i < (n >> 1); i++) {
159            final double a = 0.5 * (f[i] + f[n - i]);
160            final double b = FastMath.sin(i * FastMath.PI / n) * (f[i] - f[n - i]);
161            final double c = FastMath.cos(i * FastMath.PI / n) * (f[i] - f[n - i]);
162            x[i] = a - b;
163            x[n - i] = a + b;
164            t1 += c;
165        }
166        FastFourierTransformer transformer;
167        transformer = new FastFourierTransformer(DftNormalization.STANDARD);
168        Complex[] y = transformer.transform(x, TransformType.FORWARD);
169
170        // reconstruct the FCT result for the original array
171        transformed[0] = y[0].getReal();
172        transformed[1] = t1;
173        for (int i = 1; i < (n >> 1); i++) {
174            transformed[2 * i]     = y[i].getReal();
175            transformed[2 * i + 1] = transformed[2 * i - 1] - y[i].getImaginary();
176        }
177        transformed[n] = y[n >> 1].getReal();
178
179        return transformed;
180    }
181}