001/*
002 * Licensed to the Apache Software Foundation (ASF) under one or more
003 * contributor license agreements.  See the NOTICE file distributed with
004 * this work for additional information regarding copyright ownership.
005 * The ASF licenses this file to You under the Apache License, Version 2.0
006 * (the "License"); you may not use this file except in compliance with
007 * the License.  You may obtain a copy of the License at
008 *
009 *      http://www.apache.org/licenses/LICENSE-2.0
010 *
011 * Unless required by applicable law or agreed to in writing, software
012 * distributed under the License is distributed on an "AS IS" BASIS,
013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
014 * See the License for the specific language governing permissions and
015 * limitations under the License.
016 */
017package org.apache.commons.math3.transform;
018
019import java.io.Serializable;
020
021import org.apache.commons.math3.analysis.FunctionUtils;
022import org.apache.commons.math3.analysis.UnivariateFunction;
023import org.apache.commons.math3.complex.Complex;
024import org.apache.commons.math3.exception.MathIllegalArgumentException;
025import org.apache.commons.math3.exception.util.LocalizedFormats;
026import org.apache.commons.math3.util.ArithmeticUtils;
027import org.apache.commons.math3.util.FastMath;
028
029/**
030 * Implements the Fast Sine Transform for transformation of one-dimensional real
031 * data sets. For reference, see James S. Walker, <em>Fast Fourier
032 * Transforms</em>, chapter 3 (ISBN 0849371635).
033 * <p>
034 * There are several variants of the discrete sine transform. The present
035 * implementation corresponds to DST-I, with various normalization conventions,
036 * which are specified by the parameter {@link DstNormalization}.
037 * <strong>It should be noted that regardless to the convention, the first
038 * element of the dataset to be transformed must be zero.</strong>
039 * <p>
040 * DST-I is equivalent to DFT of an <em>odd extension</em> of the data series.
041 * More precisely, if x<sub>0</sub>, &hellip;, x<sub>N-1</sub> is the data set
042 * to be sine transformed, the extended data set x<sub>0</sub><sup>&#35;</sup>,
043 * &hellip;, x<sub>2N-1</sub><sup>&#35;</sup> is defined as follows
044 * <ul>
045 * <li>x<sub>0</sub><sup>&#35;</sup> = x<sub>0</sub> = 0,</li>
046 * <li>x<sub>k</sub><sup>&#35;</sup> = x<sub>k</sub> if 1 &le; k &lt; N,</li>
047 * <li>x<sub>N</sub><sup>&#35;</sup> = 0,</li>
048 * <li>x<sub>k</sub><sup>&#35;</sup> = -x<sub>2N-k</sub> if N + 1 &le; k &lt;
049 * 2N.</li>
050 * </ul>
051 * <p>
052 * Then, the standard DST-I y<sub>0</sub>, &hellip;, y<sub>N-1</sub> of the real
053 * data set x<sub>0</sub>, &hellip;, x<sub>N-1</sub> is equal to <em>half</em>
054 * of i (the pure imaginary number) times the N first elements of the DFT of the
055 * extended data set x<sub>0</sub><sup>&#35;</sup>, &hellip;,
056 * x<sub>2N-1</sub><sup>&#35;</sup> <br />
057 * y<sub>n</sub> = (i / 2) &sum;<sub>k=0</sub><sup>2N-1</sup>
058 * x<sub>k</sub><sup>&#35;</sup> exp[-2&pi;i nk / (2N)]
059 * &nbsp;&nbsp;&nbsp;&nbsp;k = 0, &hellip;, N-1.
060 * <p>
061 * The present implementation of the discrete sine transform as a fast sine
062 * transform requires the length of the data to be a power of two. Besides,
063 * it implicitly assumes that the sampled function is odd. In particular, the
064 * first element of the data set must be 0, which is enforced in
065 * {@link #transform(UnivariateFunction, double, double, int, TransformType)},
066 * after sampling.
067 *
068 * @since 1.2
069 */
070public class FastSineTransformer implements RealTransformer, Serializable {
071
072    /** Serializable version identifier. */
073    static final long serialVersionUID = 20120211L;
074
075    /** The type of DST to be performed. */
076    private final DstNormalization normalization;
077
078    /**
079     * Creates a new instance of this class, with various normalization conventions.
080     *
081     * @param normalization the type of normalization to be applied to the transformed data
082     */
083    public FastSineTransformer(final DstNormalization normalization) {
084        this.normalization = normalization;
085    }
086
087    /**
088     * {@inheritDoc}
089     *
090     * The first element of the specified data set is required to be {@code 0}.
091     *
092     * @throws MathIllegalArgumentException if the length of the data array is
093     *   not a power of two, or the first element of the data array is not zero
094     */
095    public double[] transform(final double[] f, final TransformType type) {
096        if (normalization == DstNormalization.ORTHOGONAL_DST_I) {
097            final double s = FastMath.sqrt(2.0 / f.length);
098            return TransformUtils.scaleArray(fst(f), s);
099        }
100        if (type == TransformType.FORWARD) {
101            return fst(f);
102        }
103        final double s = 2.0 / f.length;
104        return TransformUtils.scaleArray(fst(f), s);
105    }
106
107    /**
108     * {@inheritDoc}
109     *
110     * This implementation enforces {@code f(x) = 0.0} at {@code x = 0.0}.
111     *
112     * @throws org.apache.commons.math3.exception.NonMonotonicSequenceException
113     *   if the lower bound is greater than, or equal to the upper bound
114     * @throws org.apache.commons.math3.exception.NotStrictlyPositiveException
115     *   if the number of sample points is negative
116     * @throws MathIllegalArgumentException if the number of sample points is not a power of two
117     */
118    public double[] transform(final UnivariateFunction f,
119        final double min, final double max, final int n,
120        final TransformType type) {
121
122        final double[] data = FunctionUtils.sample(f, min, max, n);
123        data[0] = 0.0;
124        return transform(data, type);
125    }
126
127    /**
128     * Perform the FST algorithm (including inverse). The first element of the
129     * data set is required to be {@code 0}.
130     *
131     * @param f the real data array to be transformed
132     * @return the real transformed array
133     * @throws MathIllegalArgumentException if the length of the data array is
134     *   not a power of two, or the first element of the data array is not zero
135     */
136    protected double[] fst(double[] f) throws MathIllegalArgumentException {
137
138        final double[] transformed = new double[f.length];
139
140        if (!ArithmeticUtils.isPowerOfTwo(f.length)) {
141            throw new MathIllegalArgumentException(
142                    LocalizedFormats.NOT_POWER_OF_TWO_CONSIDER_PADDING,
143                    Integer.valueOf(f.length));
144        }
145        if (f[0] != 0.0) {
146            throw new MathIllegalArgumentException(
147                    LocalizedFormats.FIRST_ELEMENT_NOT_ZERO,
148                    Double.valueOf(f[0]));
149        }
150        final int n = f.length;
151        if (n == 1) {       // trivial case
152            transformed[0] = 0.0;
153            return transformed;
154        }
155
156        // construct a new array and perform FFT on it
157        final double[] x = new double[n];
158        x[0] = 0.0;
159        x[n >> 1] = 2.0 * f[n >> 1];
160        for (int i = 1; i < (n >> 1); i++) {
161            final double a = FastMath.sin(i * FastMath.PI / n) * (f[i] + f[n - i]);
162            final double b = 0.5 * (f[i] - f[n - i]);
163            x[i]     = a + b;
164            x[n - i] = a - b;
165        }
166        FastFourierTransformer transformer;
167        transformer = new FastFourierTransformer(DftNormalization.STANDARD);
168        Complex[] y = transformer.transform(x, TransformType.FORWARD);
169
170        // reconstruct the FST result for the original array
171        transformed[0] = 0.0;
172        transformed[1] = 0.5 * y[0].getReal();
173        for (int i = 1; i < (n >> 1); i++) {
174            transformed[2 * i]     = -y[i].getImaginary();
175            transformed[2 * i + 1] = y[i].getReal() + transformed[2 * i - 1];
176        }
177
178        return transformed;
179    }
180}