Class FeatureInitializerFactory
- java.lang.Object
-
- org.apache.commons.math4.neuralnet.FeatureInitializerFactory
-
public final class FeatureInitializerFactory extends Object
Creates functions that will select the initial values of a neuron's features.- Since:
- 3.3
-
-
Method Summary
All Methods Static Methods Concrete Methods Modifier and Type Method Description static FeatureInitializer
function(DoubleUnaryOperator f, double init, double inc)
Creates an initializer from a univariate functionf(x)
.static FeatureInitializer
randomize(org.apache.commons.rng.sampling.distribution.ContinuousUniformSampler random, FeatureInitializer orig)
Adds some amount of random data to the given initializer.static FeatureInitializer
uniform(org.apache.commons.rng.UniformRandomProvider rng, double min, double max)
Uniform sampling of the given range.
-
-
-
Method Detail
-
uniform
public static FeatureInitializer uniform(org.apache.commons.rng.UniformRandomProvider rng, double min, double max)
Uniform sampling of the given range.- Parameters:
min
- Lower bound of the range.max
- Upper bound of the range.rng
- Random number generator used to draw samples from a uniform distribution.- Returns:
- an initializer such that the features will be initialized with values within the given range.
- Throws:
IllegalArgumentException
- ifmin >= max
.
-
function
public static FeatureInitializer function(DoubleUnaryOperator f, double init, double inc)
Creates an initializer from a univariate functionf(x)
. The argumentx
is set toinit
at the first call and will be incremented at each call.- Parameters:
f
- Function.init
- Initial value.inc
- Increment- Returns:
- the initializer.
-
randomize
public static FeatureInitializer randomize(org.apache.commons.rng.sampling.distribution.ContinuousUniformSampler random, FeatureInitializer orig)
Adds some amount of random data to the given initializer.- Parameters:
random
- Random variable distribution sampler.orig
- Original initializer.- Returns:
- an initializer whose
value
method will returnorig.value() + random.sample()
.
-
-