001/* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017package org.apache.commons.math4.legacy.genetics; 018 019import java.util.ArrayList; 020import java.util.List; 021 022import org.apache.commons.math4.legacy.exception.DimensionMismatchException; 023import org.apache.commons.math4.legacy.exception.MathIllegalArgumentException; 024import org.apache.commons.math4.legacy.exception.OutOfRangeException; 025import org.apache.commons.math4.legacy.exception.util.LocalizedFormats; 026import org.apache.commons.rng.UniformRandomProvider; 027 028/** 029 * Perform Uniform Crossover [UX] on the specified chromosomes. A fixed mixing 030 * ratio is used to combine genes from the first and second parents, e.g. using a 031 * ratio of 0.5 would result in approximately 50% of genes coming from each 032 * parent. This is typically a poor method of crossover, but empirical evidence 033 * suggests that it is more exploratory and results in a larger part of the 034 * problem space being searched. 035 * <p> 036 * This crossover policy evaluates each gene of the parent chromosomes by choosing a 037 * uniform random number {@code p} in the range [0, 1]. If {@code p} < {@code ratio}, 038 * the parent genes are swapped. This means with a ratio of 0.7, 30% of the genes from the 039 * first parent and 70% from the second parent will be selected for the first offspring (and 040 * vice versa for the second offspring). 041 * <p> 042 * This policy works only on {@link AbstractListChromosome}, and therefore it 043 * is parameterized by T. Moreover, the chromosomes must have same lengths. 044 * 045 * @see <a href="http://en.wikipedia.org/wiki/Crossover_%28genetic_algorithm%29">Crossover techniques (Wikipedia)</a> 046 * @see <a href="http://www.obitko.com/tutorials/genetic-algorithms/crossover-mutation.php">Crossover (Obitko.com)</a> 047 * @see <a href="http://www.tomaszgwiazda.com/uniformX.htm">Uniform crossover</a> 048 * @param <T> generic type of the {@link AbstractListChromosome}s for crossover 049 * @since 3.1 050 */ 051public class UniformCrossover<T> implements CrossoverPolicy { 052 053 /** The mixing ratio. */ 054 private final double ratio; 055 056 /** 057 * Creates a new {@link UniformCrossover} policy using the given mixing ratio. 058 * 059 * @param ratio the mixing ratio 060 * @throws OutOfRangeException if the mixing ratio is outside the [0, 1] range 061 */ 062 public UniformCrossover(final double ratio) throws OutOfRangeException { 063 if (ratio < 0.0d || ratio > 1.0d) { 064 throw new OutOfRangeException(LocalizedFormats.CROSSOVER_RATE, ratio, 0.0d, 1.0d); 065 } 066 this.ratio = ratio; 067 } 068 069 /** 070 * Returns the mixing ratio used by this {@link CrossoverPolicy}. 071 * 072 * @return the mixing ratio 073 */ 074 public double getRatio() { 075 return ratio; 076 } 077 078 /** 079 * {@inheritDoc} 080 * 081 * @throws MathIllegalArgumentException iff one of the chromosomes is 082 * not an instance of {@link AbstractListChromosome} 083 * @throws DimensionMismatchException if the length of the two chromosomes is different 084 */ 085 @Override 086 @SuppressWarnings("unchecked") 087 public ChromosomePair crossover(final Chromosome first, final Chromosome second) 088 throws DimensionMismatchException, MathIllegalArgumentException { 089 090 if (!(first instanceof AbstractListChromosome<?> && second instanceof AbstractListChromosome<?>)) { 091 throw new MathIllegalArgumentException(LocalizedFormats.INVALID_FIXED_LENGTH_CHROMOSOME); 092 } 093 return mate((AbstractListChromosome<T>) first, (AbstractListChromosome<T>) second); 094 } 095 096 /** 097 * Helper for {@link #crossover(Chromosome, Chromosome)}. Performs the actual crossover. 098 * 099 * @param first the first chromosome 100 * @param second the second chromosome 101 * @return the pair of new chromosomes that resulted from the crossover 102 * @throws DimensionMismatchException if the length of the two chromosomes is different 103 */ 104 private ChromosomePair mate(final AbstractListChromosome<T> first, 105 final AbstractListChromosome<T> second) throws DimensionMismatchException { 106 final int length = first.getLength(); 107 if (length != second.getLength()) { 108 throw new DimensionMismatchException(second.getLength(), length); 109 } 110 111 // array representations of the parents 112 final List<T> parent1Rep = first.getRepresentation(); 113 final List<T> parent2Rep = second.getRepresentation(); 114 // and of the children 115 final List<T> child1Rep = new ArrayList<>(length); 116 final List<T> child2Rep = new ArrayList<>(length); 117 118 final UniformRandomProvider random = GeneticAlgorithm.getRandomGenerator(); 119 120 for (int index = 0; index < length; index++) { 121 122 if (random.nextDouble() < ratio) { 123 // swap the bits -> take other parent 124 child1Rep.add(parent2Rep.get(index)); 125 child2Rep.add(parent1Rep.get(index)); 126 } else { 127 child1Rep.add(parent1Rep.get(index)); 128 child2Rep.add(parent2Rep.get(index)); 129 } 130 } 131 132 return new ChromosomePair(first.newFixedLengthChromosome(child1Rep), 133 second.newFixedLengthChromosome(child2Rep)); 134 } 135}