001/*
002 * Licensed to the Apache Software Foundation (ASF) under one or more
003 * contributor license agreements.  See the NOTICE file distributed with
004 * this work for additional information regarding copyright ownership.
005 * The ASF licenses this file to You under the Apache License, Version 2.0
006 * (the "License"); you may not use this file except in compliance with
007 * the License.  You may obtain a copy of the License at
008 *
009 *      http://www.apache.org/licenses/LICENSE-2.0
010 *
011 * Unless required by applicable law or agreed to in writing, software
012 * distributed under the License is distributed on an "AS IS" BASIS,
013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
014 * See the License for the specific language governing permissions and
015 * limitations under the License.
016 */
017
018package org.apache.commons.math4.legacy.linear;
019
020import org.apache.commons.numbers.complex.Complex;
021import org.apache.commons.numbers.core.Precision;
022import org.apache.commons.math4.legacy.exception.DimensionMismatchException;
023import org.apache.commons.math4.legacy.exception.MathArithmeticException;
024import org.apache.commons.math4.legacy.exception.MathUnsupportedOperationException;
025import org.apache.commons.math4.legacy.exception.MaxCountExceededException;
026import org.apache.commons.math4.legacy.exception.util.LocalizedFormats;
027import org.apache.commons.math4.core.jdkmath.JdkMath;
028
029/**
030 * Calculates the eigen decomposition of a real matrix.
031 * <p>
032 * The eigen decomposition of matrix A is a set of two matrices:
033 * V and D such that A = V &times; D &times; V<sup>T</sup>.
034 * A, V and D are all m &times; m matrices.
035 * <p>
036 * This class is similar in spirit to the {@code EigenvalueDecomposition}
037 * class from the <a href="http://math.nist.gov/javanumerics/jama/">JAMA</a>
038 * library, with the following changes:
039 * <ul>
040 *   <li>a {@link #getVT() getVt} method has been added,</li>
041 *   <li>two {@link #getRealEigenvalue(int) getRealEigenvalue} and
042 *       {@link #getImagEigenvalue(int) getImagEigenvalue} methods to pick up a
043 *       single eigenvalue have been added,</li>
044 *   <li>a {@link #getEigenvector(int) getEigenvector} method to pick up a
045 *       single eigenvector has been added,</li>
046 *   <li>a {@link #getDeterminant() getDeterminant} method has been added.</li>
047 *   <li>a {@link #getSolver() getSolver} method has been added.</li>
048 * </ul>
049 * <p>
050 * As of 3.1, this class supports general real matrices (both symmetric and non-symmetric):
051 * <p>
052 * If A is symmetric, then A = V*D*V' where the eigenvalue matrix D is diagonal
053 * and the eigenvector matrix V is orthogonal, i.e.
054 * {@code A = V.multiply(D.multiply(V.transpose()))} and
055 * {@code V.multiply(V.transpose())} equals the identity matrix.
056 * </p>
057 * <p>
058 * If A is not symmetric, then the eigenvalue matrix D is block diagonal with the real
059 * eigenvalues in 1-by-1 blocks and any complex eigenvalues, lambda + i*mu, in 2-by-2
060 * blocks:
061 * <pre>
062 *    [lambda, mu    ]
063 *    [   -mu, lambda]
064 * </pre>
065 * The columns of V represent the eigenvectors in the sense that {@code A*V = V*D},
066 * i.e. A.multiply(V) equals V.multiply(D).
067 * The matrix V may be badly conditioned, or even singular, so the validity of the
068 * equation {@code A = V*D*inverse(V)} depends upon the condition of V.
069 * <p>
070 * This implementation is based on the paper by A. Drubrulle, R.S. Martin and
071 * J.H. Wilkinson "The Implicit QL Algorithm" in Wilksinson and Reinsch (1971)
072 * Handbook for automatic computation, vol. 2, Linear algebra, Springer-Verlag,
073 * New-York.
074 *
075 * @see <a href="http://mathworld.wolfram.com/EigenDecomposition.html">MathWorld</a>
076 * @see <a href="http://en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix">Wikipedia</a>
077 * @since 2.0 (changed to concrete class in 3.0)
078 */
079public class EigenDecomposition {
080    /** Internally used epsilon criteria. */
081    private static final double EPSILON = 1e-12;
082    /** Maximum number of iterations accepted in the implicit QL transformation. */
083    private static final byte MAX_ITER = 30;
084    /** Main diagonal of the tridiagonal matrix. */
085    private double[] main;
086    /** Secondary diagonal of the tridiagonal matrix. */
087    private double[] secondary;
088    /**
089     * Transformer to tridiagonal (may be null if matrix is already
090     * tridiagonal).
091     */
092    private TriDiagonalTransformer transformer;
093    /** Real part of the realEigenvalues. */
094    private double[] realEigenvalues;
095    /** Imaginary part of the realEigenvalues. */
096    private double[] imagEigenvalues;
097    /** Eigenvectors. */
098    private ArrayRealVector[] eigenvectors;
099    /** Cached value of V. */
100    private RealMatrix cachedV;
101    /** Cached value of D. */
102    private RealMatrix cachedD;
103    /** Cached value of Vt. */
104    private RealMatrix cachedVt;
105    /** Whether the matrix is symmetric. */
106    private final boolean isSymmetric;
107
108    /**
109     * Calculates the eigen decomposition of the given real matrix.
110     * <p>
111     * Supports decomposition of a general matrix since 3.1.
112     *
113     * @param matrix Matrix to decompose.
114     * @throws MaxCountExceededException if the algorithm fails to converge.
115     * @throws MathArithmeticException if the decomposition of a general matrix
116     * results in a matrix with zero norm
117     * @since 3.1
118     */
119    public EigenDecomposition(final RealMatrix matrix)
120        throws MathArithmeticException {
121        final double symTol = 10 * matrix.getRowDimension() * matrix.getColumnDimension() * Precision.EPSILON;
122        isSymmetric = MatrixUtils.isSymmetric(matrix, symTol);
123        if (isSymmetric) {
124            transformToTridiagonal(matrix);
125            findEigenVectors(transformer.getQ().getData());
126        } else {
127            final SchurTransformer t = transformToSchur(matrix);
128            findEigenVectorsFromSchur(t);
129        }
130    }
131
132    /**
133     * Calculates the eigen decomposition of the symmetric tridiagonal
134     * matrix.  The Householder matrix is assumed to be the identity matrix.
135     *
136     * @param main Main diagonal of the symmetric tridiagonal form.
137     * @param secondary Secondary of the tridiagonal form.
138     * @throws MaxCountExceededException if the algorithm fails to converge.
139     * @since 3.1
140     */
141    public EigenDecomposition(final double[] main, final double[] secondary) {
142        isSymmetric = true;
143        this.main      = main.clone();
144        this.secondary = secondary.clone();
145        transformer    = null;
146        final int size = main.length;
147        final double[][] z = new double[size][size];
148        for (int i = 0; i < size; i++) {
149            z[i][i] = 1.0;
150        }
151        findEigenVectors(z);
152    }
153
154    /**
155     * Gets the matrix V of the decomposition.
156     * V is an orthogonal matrix, i.e. its transpose is also its inverse.
157     * The columns of V are the eigenvectors of the original matrix.
158     * No assumption is made about the orientation of the system axes formed
159     * by the columns of V (e.g. in a 3-dimension space, V can form a left-
160     * or right-handed system).
161     *
162     * @return the V matrix.
163     */
164    public RealMatrix getV() {
165
166        if (cachedV == null) {
167            final int m = eigenvectors.length;
168            cachedV = MatrixUtils.createRealMatrix(m, m);
169            for (int k = 0; k < m; ++k) {
170                cachedV.setColumnVector(k, eigenvectors[k]);
171            }
172        }
173        // return the cached matrix
174        return cachedV;
175    }
176
177    /**
178     * Gets the block diagonal matrix D of the decomposition.
179     * D is a block diagonal matrix.
180     * Real eigenvalues are on the diagonal while complex values are on
181     * 2x2 blocks { {real +imaginary}, {-imaginary, real} }.
182     *
183     * @return the D matrix.
184     *
185     * @see #getRealEigenvalues()
186     * @see #getImagEigenvalues()
187     */
188    public RealMatrix getD() {
189
190        if (cachedD == null) {
191            // cache the matrix for subsequent calls
192            cachedD = MatrixUtils.createRealMatrixWithDiagonal(realEigenvalues);
193
194            for (int i = 0; i < imagEigenvalues.length; i++) {
195                if (Precision.compareTo(imagEigenvalues[i], 0.0, EPSILON) > 0) {
196                    cachedD.setEntry(i, i+1, imagEigenvalues[i]);
197                } else if (Precision.compareTo(imagEigenvalues[i], 0.0, EPSILON) < 0) {
198                    cachedD.setEntry(i, i-1, imagEigenvalues[i]);
199                }
200            }
201        }
202        return cachedD;
203    }
204
205    /**
206     * Gets the transpose of the matrix V of the decomposition.
207     * V is an orthogonal matrix, i.e. its transpose is also its inverse.
208     * The columns of V are the eigenvectors of the original matrix.
209     * No assumption is made about the orientation of the system axes formed
210     * by the columns of V (e.g. in a 3-dimension space, V can form a left-
211     * or right-handed system).
212     *
213     * @return the transpose of the V matrix.
214     */
215    public RealMatrix getVT() {
216
217        if (cachedVt == null) {
218            final int m = eigenvectors.length;
219            cachedVt = MatrixUtils.createRealMatrix(m, m);
220            for (int k = 0; k < m; ++k) {
221                cachedVt.setRowVector(k, eigenvectors[k]);
222            }
223        }
224
225        // return the cached matrix
226        return cachedVt;
227    }
228
229    /**
230     * Returns whether the calculated eigen values are complex or real.
231     * <p>The method performs a zero check for each element of the
232     * {@link #getImagEigenvalues()} array and returns {@code true} if any
233     * element is not equal to zero.
234     *
235     * @return {@code true} if the eigen values are complex, {@code false} otherwise
236     * @since 3.1
237     */
238    public boolean hasComplexEigenvalues() {
239        for (int i = 0; i < imagEigenvalues.length; i++) {
240            if (!Precision.equals(imagEigenvalues[i], 0.0, EPSILON)) {
241                return true;
242            }
243        }
244        return false;
245    }
246
247    /**
248     * Gets a copy of the real parts of the eigenvalues of the original matrix.
249     *
250     * @return a copy of the real parts of the eigenvalues of the original matrix.
251     *
252     * @see #getD()
253     * @see #getRealEigenvalue(int)
254     * @see #getImagEigenvalues()
255     */
256    public double[] getRealEigenvalues() {
257        return realEigenvalues.clone();
258    }
259
260    /**
261     * Returns the real part of the i<sup>th</sup> eigenvalue of the original
262     * matrix.
263     *
264     * @param i index of the eigenvalue (counting from 0)
265     * @return real part of the i<sup>th</sup> eigenvalue of the original
266     * matrix.
267     *
268     * @see #getD()
269     * @see #getRealEigenvalues()
270     * @see #getImagEigenvalue(int)
271     */
272    public double getRealEigenvalue(final int i) {
273        return realEigenvalues[i];
274    }
275
276    /**
277     * Gets a copy of the imaginary parts of the eigenvalues of the original
278     * matrix.
279     *
280     * @return a copy of the imaginary parts of the eigenvalues of the original
281     * matrix.
282     *
283     * @see #getD()
284     * @see #getImagEigenvalue(int)
285     * @see #getRealEigenvalues()
286     */
287    public double[] getImagEigenvalues() {
288        return imagEigenvalues.clone();
289    }
290
291    /**
292     * Gets the imaginary part of the i<sup>th</sup> eigenvalue of the original
293     * matrix.
294     *
295     * @param i Index of the eigenvalue (counting from 0).
296     * @return the imaginary part of the i<sup>th</sup> eigenvalue of the original
297     * matrix.
298     *
299     * @see #getD()
300     * @see #getImagEigenvalues()
301     * @see #getRealEigenvalue(int)
302     */
303    public double getImagEigenvalue(final int i) {
304        return imagEigenvalues[i];
305    }
306
307    /**
308     * Gets a copy of the i<sup>th</sup> eigenvector of the original matrix.
309     *
310     * @param i Index of the eigenvector (counting from 0).
311     * @return a copy of the i<sup>th</sup> eigenvector of the original matrix.
312     * @see #getD()
313     */
314    public RealVector getEigenvector(final int i) {
315        return eigenvectors[i].copy();
316    }
317
318    /**
319     * Computes the determinant of the matrix.
320     *
321     * @return the determinant of the matrix.
322     */
323    public double getDeterminant() {
324        double determinant = 1;
325        for (double lambda : realEigenvalues) {
326            determinant *= lambda;
327        }
328        return determinant;
329    }
330
331    /**
332     * Computes the square-root of the matrix.
333     * This implementation assumes that the matrix is symmetric and positive
334     * definite.
335     *
336     * @return the square-root of the matrix.
337     * @throws MathUnsupportedOperationException if the matrix is not
338     * symmetric or not positive definite.
339     * @since 3.1
340     */
341    public RealMatrix getSquareRoot() {
342        if (!isSymmetric) {
343            throw new MathUnsupportedOperationException();
344        }
345
346        final double[] sqrtEigenValues = new double[realEigenvalues.length];
347        for (int i = 0; i < realEigenvalues.length; i++) {
348            final double eigen = realEigenvalues[i];
349            if (eigen <= 0) {
350                throw new MathUnsupportedOperationException();
351            }
352            sqrtEigenValues[i] = JdkMath.sqrt(eigen);
353        }
354        final RealMatrix sqrtEigen = MatrixUtils.createRealDiagonalMatrix(sqrtEigenValues);
355        final RealMatrix v = getV();
356        final RealMatrix vT = getVT();
357
358        return v.multiply(sqrtEigen).multiply(vT);
359    }
360
361    /**
362     * Gets a solver for finding the A &times; X = B solution in exact
363     * linear sense.
364     * <p>
365     * Since 3.1, eigen decomposition of a general matrix is supported,
366     * but the {@link DecompositionSolver} only supports real eigenvalues.
367     *
368     * @return a solver
369     * @throws MathUnsupportedOperationException if the decomposition resulted in
370     * complex eigenvalues
371     */
372    public DecompositionSolver getSolver() {
373        if (hasComplexEigenvalues()) {
374            throw new MathUnsupportedOperationException();
375        }
376        return new Solver(realEigenvalues, imagEigenvalues, eigenvectors);
377    }
378
379    /** Specialized solver. */
380    private static final class Solver implements DecompositionSolver {
381        /** Real part of the realEigenvalues. */
382        private final double[] realEigenvalues;
383        /** Imaginary part of the realEigenvalues. */
384        private final double[] imagEigenvalues;
385        /** Eigenvectors. */
386        private final ArrayRealVector[] eigenvectors;
387
388        /**
389         * Builds a solver from decomposed matrix.
390         *
391         * @param realEigenvalues Real parts of the eigenvalues.
392         * @param imagEigenvalues Imaginary parts of the eigenvalues.
393         * @param eigenvectors Eigenvectors.
394         */
395        private Solver(final double[] realEigenvalues,
396                final double[] imagEigenvalues,
397                final ArrayRealVector[] eigenvectors) {
398            this.realEigenvalues = realEigenvalues;
399            this.imagEigenvalues = imagEigenvalues;
400            this.eigenvectors = eigenvectors;
401        }
402
403        /**
404         * Solves the linear equation A &times; X = B for symmetric matrices A.
405         * <p>
406         * This method only finds exact linear solutions, i.e. solutions for
407         * which ||A &times; X - B|| is exactly 0.
408         * </p>
409         *
410         * @param b Right-hand side of the equation A &times; X = B.
411         * @return a Vector X that minimizes the two norm of A &times; X - B.
412         *
413         * @throws DimensionMismatchException if the matrices dimensions do not match.
414         * @throws SingularMatrixException if the decomposed matrix is singular.
415         */
416        @Override
417        public RealVector solve(final RealVector b) {
418            if (!isNonSingular()) {
419                throw new SingularMatrixException();
420            }
421
422            final int m = realEigenvalues.length;
423            if (b.getDimension() != m) {
424                throw new DimensionMismatchException(b.getDimension(), m);
425            }
426
427            final double[] bp = new double[m];
428            for (int i = 0; i < m; ++i) {
429                final ArrayRealVector v = eigenvectors[i];
430                final double[] vData = v.getDataRef();
431                final double s = v.dotProduct(b) / realEigenvalues[i];
432                for (int j = 0; j < m; ++j) {
433                    bp[j] += s * vData[j];
434                }
435            }
436
437            return new ArrayRealVector(bp, false);
438        }
439
440        /** {@inheritDoc} */
441        @Override
442        public RealMatrix solve(RealMatrix b) {
443
444            if (!isNonSingular()) {
445                throw new SingularMatrixException();
446            }
447
448            final int m = realEigenvalues.length;
449            if (b.getRowDimension() != m) {
450                throw new DimensionMismatchException(b.getRowDimension(), m);
451            }
452
453            final int nColB = b.getColumnDimension();
454            final double[][] bp = new double[m][nColB];
455            final double[] tmpCol = new double[m];
456            for (int k = 0; k < nColB; ++k) {
457                for (int i = 0; i < m; ++i) {
458                    tmpCol[i] = b.getEntry(i, k);
459                    bp[i][k]  = 0;
460                }
461                for (int i = 0; i < m; ++i) {
462                    final ArrayRealVector v = eigenvectors[i];
463                    final double[] vData = v.getDataRef();
464                    double s = 0;
465                    for (int j = 0; j < m; ++j) {
466                        s += v.getEntry(j) * tmpCol[j];
467                    }
468                    s /= realEigenvalues[i];
469                    for (int j = 0; j < m; ++j) {
470                        bp[j][k] += s * vData[j];
471                    }
472                }
473            }
474
475            return new Array2DRowRealMatrix(bp, false);
476        }
477
478        /**
479         * Checks whether the decomposed matrix is non-singular.
480         *
481         * @return true if the decomposed matrix is non-singular.
482         */
483        @Override
484        public boolean isNonSingular() {
485            double largestEigenvalueNorm = 0.0;
486            // Looping over all values (in case they are not sorted in decreasing
487            // order of their norm).
488            for (int i = 0; i < realEigenvalues.length; ++i) {
489                largestEigenvalueNorm = JdkMath.max(largestEigenvalueNorm, eigenvalueNorm(i));
490            }
491            // Corner case: zero matrix, all exactly 0 eigenvalues
492            if (largestEigenvalueNorm == 0.0) {
493                return false;
494            }
495            for (int i = 0; i < realEigenvalues.length; ++i) {
496                // Looking for eigenvalues that are 0, where we consider anything much much smaller
497                // than the largest eigenvalue to be effectively 0.
498                if (Precision.equals(eigenvalueNorm(i) / largestEigenvalueNorm, 0, EPSILON)) {
499                    return false;
500                }
501            }
502            return true;
503        }
504
505        /**
506         * @param i which eigenvalue to find the norm of
507         * @return the norm of ith (complex) eigenvalue.
508         */
509        private double eigenvalueNorm(int i) {
510            final double re = realEigenvalues[i];
511            final double im = imagEigenvalues[i];
512            return JdkMath.sqrt(re * re + im * im);
513        }
514
515        /**
516         * Get the inverse of the decomposed matrix.
517         *
518         * @return the inverse matrix.
519         * @throws SingularMatrixException if the decomposed matrix is singular.
520         */
521        @Override
522        public RealMatrix getInverse() {
523            if (!isNonSingular()) {
524                throw new SingularMatrixException();
525            }
526
527            final int m = realEigenvalues.length;
528            final double[][] invData = new double[m][m];
529
530            for (int i = 0; i < m; ++i) {
531                final double[] invI = invData[i];
532                for (int j = 0; j < m; ++j) {
533                    double invIJ = 0;
534                    for (int k = 0; k < m; ++k) {
535                        final double[] vK = eigenvectors[k].getDataRef();
536                        invIJ += vK[i] * vK[j] / realEigenvalues[k];
537                    }
538                    invI[j] = invIJ;
539                }
540            }
541            return MatrixUtils.createRealMatrix(invData);
542        }
543    }
544
545    /**
546     * Transforms the matrix to tridiagonal form.
547     *
548     * @param matrix Matrix to transform.
549     */
550    private void transformToTridiagonal(final RealMatrix matrix) {
551        // transform the matrix to tridiagonal
552        transformer = new TriDiagonalTransformer(matrix);
553        main = transformer.getMainDiagonalRef();
554        secondary = transformer.getSecondaryDiagonalRef();
555    }
556
557    /**
558     * Find eigenvalues and eigenvectors (Dubrulle et al., 1971).
559     *
560     * @param householderMatrix Householder matrix of the transformation
561     * to tridiagonal form.
562     */
563    private void findEigenVectors(final double[][] householderMatrix) {
564        final double[][]z = householderMatrix.clone();
565        final int n = main.length;
566        realEigenvalues = new double[n];
567        imagEigenvalues = new double[n];
568        final double[] e = new double[n];
569        for (int i = 0; i < n - 1; i++) {
570            realEigenvalues[i] = main[i];
571            e[i] = secondary[i];
572        }
573        realEigenvalues[n - 1] = main[n - 1];
574        e[n - 1] = 0;
575
576        // Determine the largest main and secondary value in absolute term.
577        double maxAbsoluteValue = 0;
578        for (int i = 0; i < n; i++) {
579            if (JdkMath.abs(realEigenvalues[i]) > maxAbsoluteValue) {
580                maxAbsoluteValue = JdkMath.abs(realEigenvalues[i]);
581            }
582            if (JdkMath.abs(e[i]) > maxAbsoluteValue) {
583                maxAbsoluteValue = JdkMath.abs(e[i]);
584            }
585        }
586        // Make null any main and secondary value too small to be significant
587        if (maxAbsoluteValue != 0) {
588            for (int i=0; i < n; i++) {
589                if (JdkMath.abs(realEigenvalues[i]) <= Precision.EPSILON * maxAbsoluteValue) {
590                    realEigenvalues[i] = 0;
591                }
592                if (JdkMath.abs(e[i]) <= Precision.EPSILON * maxAbsoluteValue) {
593                    e[i]=0;
594                }
595            }
596        }
597
598        for (int j = 0; j < n; j++) {
599            int its = 0;
600            int m;
601            do {
602                for (m = j; m < n - 1; m++) {
603                    double delta = JdkMath.abs(realEigenvalues[m]) +
604                        JdkMath.abs(realEigenvalues[m + 1]);
605                    if (JdkMath.abs(e[m]) + delta == delta) {
606                        break;
607                    }
608                }
609                if (m != j) {
610                    if (its == MAX_ITER) {
611                        throw new MaxCountExceededException(LocalizedFormats.CONVERGENCE_FAILED,
612                                                            MAX_ITER);
613                    }
614                    its++;
615                    double q = (realEigenvalues[j + 1] - realEigenvalues[j]) / (2 * e[j]);
616                    double t = JdkMath.sqrt(1 + q * q);
617                    if (q < 0.0) {
618                        q = realEigenvalues[m] - realEigenvalues[j] + e[j] / (q - t);
619                    } else {
620                        q = realEigenvalues[m] - realEigenvalues[j] + e[j] / (q + t);
621                    }
622                    double u = 0.0;
623                    double s = 1.0;
624                    double c = 1.0;
625                    int i;
626                    for (i = m - 1; i >= j; i--) {
627                        double p = s * e[i];
628                        double h = c * e[i];
629                        if (JdkMath.abs(p) >= JdkMath.abs(q)) {
630                            c = q / p;
631                            t = JdkMath.sqrt(c * c + 1.0);
632                            e[i + 1] = p * t;
633                            s = 1.0 / t;
634                            c *= s;
635                        } else {
636                            s = p / q;
637                            t = JdkMath.sqrt(s * s + 1.0);
638                            e[i + 1] = q * t;
639                            c = 1.0 / t;
640                            s *= c;
641                        }
642                        if (e[i + 1] == 0.0) {
643                            realEigenvalues[i + 1] -= u;
644                            e[m] = 0.0;
645                            break;
646                        }
647                        q = realEigenvalues[i + 1] - u;
648                        t = (realEigenvalues[i] - q) * s + 2.0 * c * h;
649                        u = s * t;
650                        realEigenvalues[i + 1] = q + u;
651                        q = c * t - h;
652                        for (int ia = 0; ia < n; ia++) {
653                            p = z[ia][i + 1];
654                            z[ia][i + 1] = s * z[ia][i] + c * p;
655                            z[ia][i] = c * z[ia][i] - s * p;
656                        }
657                    }
658                    if (t == 0.0 && i >= j) {
659                        continue;
660                    }
661                    realEigenvalues[j] -= u;
662                    e[j] = q;
663                    e[m] = 0.0;
664                }
665            } while (m != j);
666        }
667
668        //Sort the eigen values (and vectors) in increase order
669        for (int i = 0; i < n; i++) {
670            int k = i;
671            double p = realEigenvalues[i];
672            for (int j = i + 1; j < n; j++) {
673                if (realEigenvalues[j] > p) {
674                    k = j;
675                    p = realEigenvalues[j];
676                }
677            }
678            if (k != i) {
679                realEigenvalues[k] = realEigenvalues[i];
680                realEigenvalues[i] = p;
681                for (int j = 0; j < n; j++) {
682                    p = z[j][i];
683                    z[j][i] = z[j][k];
684                    z[j][k] = p;
685                }
686            }
687        }
688
689        // Determine the largest eigen value in absolute term.
690        maxAbsoluteValue = 0;
691        for (int i = 0; i < n; i++) {
692            if (JdkMath.abs(realEigenvalues[i]) > maxAbsoluteValue) {
693                maxAbsoluteValue=JdkMath.abs(realEigenvalues[i]);
694            }
695        }
696        // Make null any eigen value too small to be significant
697        if (maxAbsoluteValue != 0.0) {
698            for (int i=0; i < n; i++) {
699                if (JdkMath.abs(realEigenvalues[i]) < Precision.EPSILON * maxAbsoluteValue) {
700                    realEigenvalues[i] = 0;
701                }
702            }
703        }
704        eigenvectors = new ArrayRealVector[n];
705        final double[] tmp = new double[n];
706        for (int i = 0; i < n; i++) {
707            for (int j = 0; j < n; j++) {
708                tmp[j] = z[j][i];
709            }
710            eigenvectors[i] = new ArrayRealVector(tmp);
711        }
712    }
713
714    /**
715     * Transforms the matrix to Schur form and calculates the eigenvalues.
716     *
717     * @param matrix Matrix to transform.
718     * @return the {@link SchurTransformer Shur transform} for this matrix
719     */
720    private SchurTransformer transformToSchur(final RealMatrix matrix) {
721        final SchurTransformer schurTransform = new SchurTransformer(matrix);
722        final double[][] matT = schurTransform.getT().getData();
723
724        realEigenvalues = new double[matT.length];
725        imagEigenvalues = new double[matT.length];
726
727        for (int i = 0; i < realEigenvalues.length; i++) {
728            if (i == (realEigenvalues.length - 1) ||
729                Precision.equals(matT[i + 1][i], 0.0, EPSILON)) {
730                realEigenvalues[i] = matT[i][i];
731            } else {
732                final double x = matT[i + 1][i + 1];
733                final double p = 0.5 * (matT[i][i] - x);
734                final double z = JdkMath.sqrt(JdkMath.abs(p * p + matT[i + 1][i] * matT[i][i + 1]));
735                realEigenvalues[i] = x + p;
736                imagEigenvalues[i] = z;
737                realEigenvalues[i + 1] = x + p;
738                imagEigenvalues[i + 1] = -z;
739                i++;
740            }
741        }
742        return schurTransform;
743    }
744
745    /**
746     * Performs a division of two complex numbers.
747     *
748     * @param xr real part of the first number
749     * @param xi imaginary part of the first number
750     * @param yr real part of the second number
751     * @param yi imaginary part of the second number
752     * @return result of the complex division
753     */
754    private Complex cdiv(final double xr, final double xi,
755                         final double yr, final double yi) {
756        return Complex.ofCartesian(xr, xi).divide(Complex.ofCartesian(yr, yi));
757    }
758
759    /**
760     * Find eigenvectors from a matrix transformed to Schur form.
761     *
762     * @param schur the schur transformation of the matrix
763     * @throws MathArithmeticException if the Schur form has a norm of zero
764     */
765    private void findEigenVectorsFromSchur(final SchurTransformer schur)
766        throws MathArithmeticException {
767        final double[][] matrixT = schur.getT().getData();
768        final double[][] matrixP = schur.getP().getData();
769
770        final int n = matrixT.length;
771
772        // compute matrix norm
773        double norm = 0.0;
774        for (int i = 0; i < n; i++) {
775           for (int j = JdkMath.max(i - 1, 0); j < n; j++) {
776               norm += JdkMath.abs(matrixT[i][j]);
777           }
778        }
779
780        // we can not handle a matrix with zero norm
781        if (Precision.equals(norm, 0.0, EPSILON)) {
782           throw new MathArithmeticException(LocalizedFormats.ZERO_NORM);
783        }
784
785        // Backsubstitute to find vectors of upper triangular form
786
787        double r = 0.0;
788        double s = 0.0;
789        double z = 0.0;
790
791        for (int idx = n - 1; idx >= 0; idx--) {
792            double p = realEigenvalues[idx];
793            double q = imagEigenvalues[idx];
794
795            if (Precision.equals(q, 0.0)) {
796                // Real vector
797                int l = idx;
798                matrixT[idx][idx] = 1.0;
799                for (int i = idx - 1; i >= 0; i--) {
800                    double w = matrixT[i][i] - p;
801                    r = 0.0;
802                    for (int j = l; j <= idx; j++) {
803                        r += matrixT[i][j] * matrixT[j][idx];
804                    }
805                    if (Precision.compareTo(imagEigenvalues[i], 0.0, EPSILON) < 0) {
806                        z = w;
807                        s = r;
808                    } else {
809                        l = i;
810                        if (Precision.equals(imagEigenvalues[i], 0.0)) {
811                            if (w != 0.0) {
812                                matrixT[i][idx] = -r / w;
813                            } else {
814                                matrixT[i][idx] = -r / (Precision.EPSILON * norm);
815                            }
816                        } else {
817                            // Solve real equations
818                            double x = matrixT[i][i + 1];
819                            double y = matrixT[i + 1][i];
820                            q = (realEigenvalues[i] - p) * (realEigenvalues[i] - p) +
821                                imagEigenvalues[i] * imagEigenvalues[i];
822                            double t = (x * s - z * r) / q;
823                            matrixT[i][idx] = t;
824                            if (JdkMath.abs(x) > JdkMath.abs(z)) {
825                                matrixT[i + 1][idx] = (-r - w * t) / x;
826                            } else {
827                                matrixT[i + 1][idx] = (-s - y * t) / z;
828                            }
829                        }
830
831                        // Overflow control
832                        double t = JdkMath.abs(matrixT[i][idx]);
833                        if ((Precision.EPSILON * t) * t > 1) {
834                            for (int j = i; j <= idx; j++) {
835                                matrixT[j][idx] /= t;
836                            }
837                        }
838                    }
839                }
840            } else if (q < 0.0) {
841                // Complex vector
842                int l = idx - 1;
843
844                // Last vector component imaginary so matrix is triangular
845                if (JdkMath.abs(matrixT[idx][idx - 1]) > JdkMath.abs(matrixT[idx - 1][idx])) {
846                    matrixT[idx - 1][idx - 1] = q / matrixT[idx][idx - 1];
847                    matrixT[idx - 1][idx]     = -(matrixT[idx][idx] - p) / matrixT[idx][idx - 1];
848                } else {
849                    final Complex result = cdiv(0.0, -matrixT[idx - 1][idx],
850                                                matrixT[idx - 1][idx - 1] - p, q);
851                    matrixT[idx - 1][idx - 1] = result.getReal();
852                    matrixT[idx - 1][idx]     = result.getImaginary();
853                }
854
855                matrixT[idx][idx - 1] = 0.0;
856                matrixT[idx][idx]     = 1.0;
857
858                for (int i = idx - 2; i >= 0; i--) {
859                    double ra = 0.0;
860                    double sa = 0.0;
861                    for (int j = l; j <= idx; j++) {
862                        ra += matrixT[i][j] * matrixT[j][idx - 1];
863                        sa += matrixT[i][j] * matrixT[j][idx];
864                    }
865                    double w = matrixT[i][i] - p;
866
867                    if (Precision.compareTo(imagEigenvalues[i], 0.0, EPSILON) < 0) {
868                        z = w;
869                        r = ra;
870                        s = sa;
871                    } else {
872                        l = i;
873                        if (Precision.equals(imagEigenvalues[i], 0.0)) {
874                            final Complex c = cdiv(-ra, -sa, w, q);
875                            matrixT[i][idx - 1] = c.getReal();
876                            matrixT[i][idx] = c.getImaginary();
877                        } else {
878                            // Solve complex equations
879                            double x = matrixT[i][i + 1];
880                            double y = matrixT[i + 1][i];
881                            double vr = (realEigenvalues[i] - p) * (realEigenvalues[i] - p) +
882                                        imagEigenvalues[i] * imagEigenvalues[i] - q * q;
883                            final double vi = (realEigenvalues[i] - p) * 2.0 * q;
884                            if (Precision.equals(vr, 0.0) && Precision.equals(vi, 0.0)) {
885                                vr = Precision.EPSILON * norm *
886                                     (JdkMath.abs(w) + JdkMath.abs(q) + JdkMath.abs(x) +
887                                      JdkMath.abs(y) + JdkMath.abs(z));
888                            }
889                            final Complex c     = cdiv(x * r - z * ra + q * sa,
890                                                       x * s - z * sa - q * ra, vr, vi);
891                            matrixT[i][idx - 1] = c.getReal();
892                            matrixT[i][idx]     = c.getImaginary();
893
894                            if (JdkMath.abs(x) > (JdkMath.abs(z) + JdkMath.abs(q))) {
895                                matrixT[i + 1][idx - 1] = (-ra - w * matrixT[i][idx - 1] +
896                                                           q * matrixT[i][idx]) / x;
897                                matrixT[i + 1][idx]     = (-sa - w * matrixT[i][idx] -
898                                                           q * matrixT[i][idx - 1]) / x;
899                            } else {
900                                final Complex c2        = cdiv(-r - y * matrixT[i][idx - 1],
901                                                               -s - y * matrixT[i][idx], z, q);
902                                matrixT[i + 1][idx - 1] = c2.getReal();
903                                matrixT[i + 1][idx]     = c2.getImaginary();
904                            }
905                        }
906
907                        // Overflow control
908                        double t = JdkMath.max(JdkMath.abs(matrixT[i][idx - 1]),
909                                                JdkMath.abs(matrixT[i][idx]));
910                        if ((Precision.EPSILON * t) * t > 1) {
911                            for (int j = i; j <= idx; j++) {
912                                matrixT[j][idx - 1] /= t;
913                                matrixT[j][idx] /= t;
914                            }
915                        }
916                    }
917                }
918            }
919        }
920
921        // Back transformation to get eigenvectors of original matrix
922        for (int j = n - 1; j >= 0; j--) {
923            for (int i = 0; i <= n - 1; i++) {
924                z = 0.0;
925                for (int k = 0; k <= JdkMath.min(j, n - 1); k++) {
926                    z += matrixP[i][k] * matrixT[k][j];
927                }
928                matrixP[i][j] = z;
929            }
930        }
931
932        eigenvectors = new ArrayRealVector[n];
933        final double[] tmp = new double[n];
934        for (int i = 0; i < n; i++) {
935            for (int j = 0; j < n; j++) {
936                tmp[j] = matrixP[j][i];
937            }
938            eigenvectors[i] = new ArrayRealVector(tmp);
939        }
940    }
941}