001/*
002 * Licensed to the Apache Software Foundation (ASF) under one or more
003 * contributor license agreements.  See the NOTICE file distributed with
004 * this work for additional information regarding copyright ownership.
005 * The ASF licenses this file to You under the Apache License, Version 2.0
006 * (the "License"); you may not use this file except in compliance with
007 * the License.  You may obtain a copy of the License at
008 *
009 *      http://www.apache.org/licenses/LICENSE-2.0
010 *
011 * Unless required by applicable law or agreed to in writing, software
012 * distributed under the License is distributed on an "AS IS" BASIS,
013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
014 * See the License for the specific language governing permissions and
015 * limitations under the License.
016 */
017
018package org.apache.commons.math4.legacy.ode.nonstiff;
019
020import org.apache.commons.math4.legacy.core.Field;
021import org.apache.commons.math4.legacy.core.RealFieldElement;
022import org.apache.commons.math4.legacy.exception.DimensionMismatchException;
023import org.apache.commons.math4.legacy.exception.MaxCountExceededException;
024import org.apache.commons.math4.legacy.exception.NoBracketingException;
025import org.apache.commons.math4.legacy.exception.NumberIsTooSmallException;
026import org.apache.commons.math4.legacy.ode.FieldEquationsMapper;
027import org.apache.commons.math4.legacy.ode.FieldExpandableODE;
028import org.apache.commons.math4.legacy.ode.FieldODEState;
029import org.apache.commons.math4.legacy.ode.FieldODEStateAndDerivative;
030import org.apache.commons.math4.legacy.core.MathArrays;
031
032/**
033 * This class implements the common part of all embedded Runge-Kutta
034 * integrators for Ordinary Differential Equations.
035 *
036 * <p>These methods are embedded explicit Runge-Kutta methods with two
037 * sets of coefficients allowing to estimate the error, their Butcher
038 * arrays are as follows :
039 * <pre>
040 *    0  |
041 *   c2  | a21
042 *   c3  | a31  a32
043 *   ... |        ...
044 *   cs  | as1  as2  ...  ass-1
045 *       |--------------------------
046 *       |  b1   b2  ...   bs-1  bs
047 *       |  b'1  b'2 ...   b's-1 b's
048 * </pre>
049 *
050 * <p>In fact, we rather use the array defined by ej = bj - b'j to
051 * compute directly the error rather than computing two estimates and
052 * then comparing them.</p>
053 *
054 * <p>Some methods are qualified as <i>fsal</i> (first same as last)
055 * methods. This means the last evaluation of the derivatives in one
056 * step is the same as the first in the next step. Then, this
057 * evaluation can be reused from one step to the next one and the cost
058 * of such a method is really s-1 evaluations despite the method still
059 * has s stages. This behaviour is true only for successful steps, if
060 * the step is rejected after the error estimation phase, no
061 * evaluation is saved. For an <i>fsal</i> method, we have cs = 1 and
062 * asi = bi for all i.</p>
063 *
064 * @param <T> the type of the field elements
065 * @since 3.6
066 */
067
068public abstract class EmbeddedRungeKuttaFieldIntegrator<T extends RealFieldElement<T>>
069    extends AdaptiveStepsizeFieldIntegrator<T>
070    implements FieldButcherArrayProvider<T> {
071
072    /** Index of the pre-computed derivative for <i>fsal</i> methods. */
073    private final int fsal;
074
075    /** Time steps from Butcher array (without the first zero). */
076    private final T[] c;
077
078    /** Internal weights from Butcher array (without the first empty row). */
079    private final T[][] a;
080
081    /** External weights for the high order method from Butcher array. */
082    private final T[] b;
083
084    /** Stepsize control exponent. */
085    private final T exp;
086
087    /** Safety factor for stepsize control. */
088    private T safety;
089
090    /** Minimal reduction factor for stepsize control. */
091    private T minReduction;
092
093    /** Maximal growth factor for stepsize control. */
094    private T maxGrowth;
095
096    /** Build a Runge-Kutta integrator with the given Butcher array.
097     * @param field field to which the time and state vector elements belong
098     * @param name name of the method
099     * @param fsal index of the pre-computed derivative for <i>fsal</i> methods
100     * or -1 if method is not <i>fsal</i>
101     * @param minStep minimal step (sign is irrelevant, regardless of
102     * integration direction, forward or backward), the last step can
103     * be smaller than this
104     * @param maxStep maximal step (sign is irrelevant, regardless of
105     * integration direction, forward or backward), the last step can
106     * be smaller than this
107     * @param scalAbsoluteTolerance allowed absolute error
108     * @param scalRelativeTolerance allowed relative error
109     */
110    protected EmbeddedRungeKuttaFieldIntegrator(final Field<T> field, final String name, final int fsal,
111                                                final double minStep, final double maxStep,
112                                                final double scalAbsoluteTolerance,
113                                                final double scalRelativeTolerance) {
114
115        super(field, name, minStep, maxStep, scalAbsoluteTolerance, scalRelativeTolerance);
116
117        this.fsal = fsal;
118        this.c    = getC();
119        this.a    = getA();
120        this.b    = getB();
121
122        exp = field.getOne().divide(-getOrder());
123
124        // set the default values of the algorithm control parameters
125        setSafety(field.getZero().add(0.9));
126        setMinReduction(field.getZero().add(0.2));
127        setMaxGrowth(field.getZero().add(10.0));
128    }
129
130    /** Build a Runge-Kutta integrator with the given Butcher array.
131     * @param field field to which the time and state vector elements belong
132     * @param name name of the method
133     * @param fsal index of the pre-computed derivative for <i>fsal</i> methods
134     * or -1 if method is not <i>fsal</i>
135     * @param minStep minimal step (must be positive even for backward
136     * integration), the last step can be smaller than this
137     * @param maxStep maximal step (must be positive even for backward
138     * integration)
139     * @param vecAbsoluteTolerance allowed absolute error
140     * @param vecRelativeTolerance allowed relative error
141     */
142    protected EmbeddedRungeKuttaFieldIntegrator(final Field<T> field, final String name, final int fsal,
143                                                final double   minStep, final double maxStep,
144                                                final double[] vecAbsoluteTolerance,
145                                                final double[] vecRelativeTolerance) {
146
147        super(field, name, minStep, maxStep, vecAbsoluteTolerance, vecRelativeTolerance);
148
149        this.fsal = fsal;
150        this.c    = getC();
151        this.a    = getA();
152        this.b    = getB();
153
154        exp = field.getOne().divide(-getOrder());
155
156        // set the default values of the algorithm control parameters
157        setSafety(field.getZero().add(0.9));
158        setMinReduction(field.getZero().add(0.2));
159        setMaxGrowth(field.getZero().add(10.0));
160    }
161
162    /** Create a fraction.
163     * @param p numerator
164     * @param q denominator
165     * @return p/q computed in the instance field
166     */
167    protected T fraction(final int p, final int q) {
168        return getField().getOne().multiply(p).divide(q);
169    }
170
171    /** Create a fraction.
172     * @param p numerator
173     * @param q denominator
174     * @return p/q computed in the instance field
175     */
176    protected T fraction(final double p, final double q) {
177        return getField().getOne().multiply(p).divide(q);
178    }
179
180    /** Create an interpolator.
181     * @param forward integration direction indicator
182     * @param yDotK slopes at the intermediate points
183     * @param globalPreviousState start of the global step
184     * @param globalCurrentState end of the global step
185     * @param mapper equations mapper for the all equations
186     * @return external weights for the high order method from Butcher array
187     */
188    protected abstract RungeKuttaFieldStepInterpolator<T> createInterpolator(boolean forward, T[][] yDotK,
189                                                                             FieldODEStateAndDerivative<T> globalPreviousState,
190                                                                             FieldODEStateAndDerivative<T> globalCurrentState,
191                                                                             FieldEquationsMapper<T> mapper);
192    /** Get the order of the method.
193     * @return order of the method
194     */
195    public abstract int getOrder();
196
197    /** Get the safety factor for stepsize control.
198     * @return safety factor
199     */
200    public T getSafety() {
201        return safety;
202    }
203
204    /** Set the safety factor for stepsize control.
205     * @param safety safety factor
206     */
207    public void setSafety(final T safety) {
208        this.safety = safety;
209    }
210
211    /** {@inheritDoc} */
212    @Override
213    public FieldODEStateAndDerivative<T> integrate(final FieldExpandableODE<T> equations,
214                                                   final FieldODEState<T> initialState, final T finalTime)
215        throws NumberIsTooSmallException, DimensionMismatchException,
216        MaxCountExceededException, NoBracketingException {
217
218        sanityChecks(initialState, finalTime);
219        final T   t0 = initialState.getTime();
220        final T[] y0 = equations.getMapper().mapState(initialState);
221        setStepStart(initIntegration(equations, t0, y0, finalTime));
222        final boolean forward = finalTime.subtract(initialState.getTime()).getReal() > 0;
223
224        // create some internal working arrays
225        final int   stages = c.length + 1;
226        T[]         y      = y0;
227        final T[][] yDotK  = MathArrays.buildArray(getField(), stages, -1);
228        final T[]   yTmp   = MathArrays.buildArray(getField(), y0.length);
229
230        // set up integration control objects
231        T  hNew           = getField().getZero();
232        boolean firstTime = true;
233
234        // main integration loop
235        setIsLastStep(false);
236        do {
237
238            // iterate over step size, ensuring local normalized error is smaller than 1
239            T error = getField().getZero().add(10);
240            while (error.subtract(1.0).getReal() >= 0) {
241
242                // first stage
243                y        = equations.getMapper().mapState(getStepStart());
244                yDotK[0] = equations.getMapper().mapDerivative(getStepStart());
245
246                if (firstTime) {
247                    final T[] scale = MathArrays.buildArray(getField(), mainSetDimension);
248                    if (vecAbsoluteTolerance == null) {
249                        for (int i = 0; i < scale.length; ++i) {
250                            scale[i] = y[i].abs().multiply(scalRelativeTolerance).add(scalAbsoluteTolerance);
251                        }
252                    } else {
253                        for (int i = 0; i < scale.length; ++i) {
254                            scale[i] = y[i].abs().multiply(vecRelativeTolerance[i]).add(vecAbsoluteTolerance[i]);
255                        }
256                    }
257                    hNew = initializeStep(forward, getOrder(), scale, getStepStart(), equations.getMapper());
258                    firstTime = false;
259                }
260
261                setStepSize(hNew);
262                if (forward) {
263                    if (getStepStart().getTime().add(getStepSize()).subtract(finalTime).getReal() >= 0) {
264                        setStepSize(finalTime.subtract(getStepStart().getTime()));
265                    }
266                } else {
267                    if (getStepStart().getTime().add(getStepSize()).subtract(finalTime).getReal() <= 0) {
268                        setStepSize(finalTime.subtract(getStepStart().getTime()));
269                    }
270                }
271
272                // next stages
273                for (int k = 1; k < stages; ++k) {
274
275                    for (int j = 0; j < y0.length; ++j) {
276                        T sum = yDotK[0][j].multiply(a[k-1][0]);
277                        for (int l = 1; l < k; ++l) {
278                            sum = sum.add(yDotK[l][j].multiply(a[k-1][l]));
279                        }
280                        yTmp[j] = y[j].add(getStepSize().multiply(sum));
281                    }
282
283                    yDotK[k] = computeDerivatives(getStepStart().getTime().add(getStepSize().multiply(c[k-1])), yTmp);
284                }
285
286                // estimate the state at the end of the step
287                for (int j = 0; j < y0.length; ++j) {
288                    T sum    = yDotK[0][j].multiply(b[0]);
289                    for (int l = 1; l < stages; ++l) {
290                        sum = sum.add(yDotK[l][j].multiply(b[l]));
291                    }
292                    yTmp[j] = y[j].add(getStepSize().multiply(sum));
293                }
294
295                // estimate the error at the end of the step
296                error = estimateError(yDotK, y, yTmp, getStepSize());
297                if (error.subtract(1.0).getReal() >= 0) {
298                    // reject the step and attempt to reduce error by stepsize control
299                    final T factor = RealFieldElement.min(maxGrowth,
300                                                   RealFieldElement.max(minReduction, safety.multiply(error.pow(exp))));
301                    hNew = filterStep(getStepSize().multiply(factor), forward, false);
302                }
303            }
304            final T   stepEnd = getStepStart().getTime().add(getStepSize());
305            final T[] yDotTmp = (fsal >= 0) ? yDotK[fsal] : computeDerivatives(stepEnd, yTmp);
306            final FieldODEStateAndDerivative<T> stateTmp = new FieldODEStateAndDerivative<>(stepEnd, yTmp, yDotTmp);
307
308            // local error is small enough: accept the step, trigger events and step handlers
309            System.arraycopy(yTmp, 0, y, 0, y0.length);
310            setStepStart(acceptStep(createInterpolator(forward, yDotK, getStepStart(), stateTmp, equations.getMapper()),
311                                    finalTime));
312
313            if (!isLastStep()) {
314
315                // stepsize control for next step
316                final T factor = RealFieldElement.min(maxGrowth,
317                                               RealFieldElement.max(minReduction, safety.multiply(error.pow(exp))));
318                final T  scaledH    = getStepSize().multiply(factor);
319                final T  nextT      = getStepStart().getTime().add(scaledH);
320                final boolean nextIsLast = forward ?
321                                           nextT.subtract(finalTime).getReal() >= 0 :
322                                           nextT.subtract(finalTime).getReal() <= 0;
323                hNew = filterStep(scaledH, forward, nextIsLast);
324
325                final T  filteredNextT      = getStepStart().getTime().add(hNew);
326                final boolean filteredNextIsLast = forward ?
327                                                   filteredNextT.subtract(finalTime).getReal() >= 0 :
328                                                   filteredNextT.subtract(finalTime).getReal() <= 0;
329                if (filteredNextIsLast) {
330                    hNew = finalTime.subtract(getStepStart().getTime());
331                }
332            }
333        } while (!isLastStep());
334
335        final FieldODEStateAndDerivative<T> finalState = getStepStart();
336        resetInternalState();
337        return finalState;
338    }
339
340    /** Get the minimal reduction factor for stepsize control.
341     * @return minimal reduction factor
342     */
343    public T getMinReduction() {
344        return minReduction;
345    }
346
347    /** Set the minimal reduction factor for stepsize control.
348     * @param minReduction minimal reduction factor
349     */
350    public void setMinReduction(final T minReduction) {
351        this.minReduction = minReduction;
352    }
353
354    /** Get the maximal growth factor for stepsize control.
355     * @return maximal growth factor
356     */
357    public T getMaxGrowth() {
358        return maxGrowth;
359    }
360
361    /** Set the maximal growth factor for stepsize control.
362     * @param maxGrowth maximal growth factor
363     */
364    public void setMaxGrowth(final T maxGrowth) {
365        this.maxGrowth = maxGrowth;
366    }
367
368    /** Compute the error ratio.
369     * @param yDotK derivatives computed during the first stages
370     * @param y0 estimate of the step at the start of the step
371     * @param y1 estimate of the step at the end of the step
372     * @param h  current step
373     * @return error ratio, greater than 1 if step should be rejected
374     */
375    protected abstract T estimateError(T[][] yDotK, T[] y0, T[] y1, T h);
376}