001/*
002 * Licensed to the Apache Software Foundation (ASF) under one or more
003 * contributor license agreements.  See the NOTICE file distributed with
004 * this work for additional information regarding copyright ownership.
005 * The ASF licenses this file to You under the Apache License, Version 2.0
006 * (the "License"); you may not use this file except in compliance with
007 * the License.  You may obtain a copy of the License at
008 *
009 *      http://www.apache.org/licenses/LICENSE-2.0
010 *
011 * Unless required by applicable law or agreed to in writing, software
012 * distributed under the License is distributed on an "AS IS" BASIS,
013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
014 * See the License for the specific language governing permissions and
015 * limitations under the License.
016 */
017package org.apache.commons.math4.legacy.optim.nonlinear.scalar.noderiv;
018
019import java.util.Arrays;
020import java.util.List;
021import java.util.ArrayList;
022import java.util.Comparator;
023import java.util.Collections;
024import java.util.Objects;
025import java.util.function.UnaryOperator;
026import java.util.function.IntSupplier;
027import java.util.concurrent.CopyOnWriteArrayList;
028
029import org.apache.commons.math4.legacy.core.MathArrays;
030import org.apache.commons.math4.legacy.analysis.MultivariateFunction;
031import org.apache.commons.math4.legacy.exception.MathUnsupportedOperationException;
032import org.apache.commons.math4.legacy.exception.MathInternalError;
033import org.apache.commons.math4.legacy.exception.util.LocalizedFormats;
034import org.apache.commons.math4.legacy.optim.ConvergenceChecker;
035import org.apache.commons.math4.legacy.optim.OptimizationData;
036import org.apache.commons.math4.legacy.optim.PointValuePair;
037import org.apache.commons.math4.legacy.optim.SimpleValueChecker;
038import org.apache.commons.math4.legacy.optim.InitialGuess;
039import org.apache.commons.math4.legacy.optim.MaxEval;
040import org.apache.commons.math4.legacy.optim.nonlinear.scalar.GoalType;
041import org.apache.commons.math4.legacy.optim.nonlinear.scalar.MultivariateOptimizer;
042import org.apache.commons.math4.legacy.optim.nonlinear.scalar.SimulatedAnnealing;
043import org.apache.commons.math4.legacy.optim.nonlinear.scalar.PopulationSize;
044import org.apache.commons.math4.legacy.optim.nonlinear.scalar.ObjectiveFunction;
045
046/**
047 * This class implements simplex-based direct search optimization.
048 *
049 * <p>
050 * Direct search methods only use objective function values, they do
051 * not need derivatives and don't either try to compute approximation
052 * of the derivatives. According to a 1996 paper by Margaret H. Wright
053 * (<a href="http://cm.bell-labs.com/cm/cs/doc/96/4-02.ps.gz">Direct
054 * Search Methods: Once Scorned, Now Respectable</a>), they are used
055 * when either the computation of the derivative is impossible (noisy
056 * functions, unpredictable discontinuities) or difficult (complexity,
057 * computation cost). In the first cases, rather than an optimum, a
058 * <em>not too bad</em> point is desired. In the latter cases, an
059 * optimum is desired but cannot be reasonably found. In all cases
060 * direct search methods can be useful.
061 *
062 * <p>
063 * Simplex-based direct search methods are based on comparison of
064 * the objective function values at the vertices of a simplex (which is a
065 * set of n+1 points in dimension n) that is updated by the algorithms
066 * steps.
067 *
068 * <p>
069 * In addition to those documented in
070 * {@link MultivariateOptimizer#optimize(OptimizationData[]) MultivariateOptimizer},
071 * an instance of this class will register the following data:
072 * <ul>
073 *  <li>{@link Simplex}</li>
074 *  <li>{@link Simplex.TransformFactory}</li>
075 *  <li>{@link SimulatedAnnealing}</li>
076 *  <li>{@link PopulationSize}</li>
077 * </ul>
078 *
079 * <p>
080 * Each call to {@code optimize} will re-use the start configuration of
081 * the current simplex and move it such that its first vertex is at the
082 * provided start point of the optimization.
083 * If the {@code optimize} method is called to solve a different problem
084 * and the number of parameters change, the simplex must be re-initialized
085 * to one with the appropriate dimensions.
086 *
087 * <p>
088 * Convergence is considered achieved when <em>all</em> the simplex points
089 * have converged.
090 * <p>
091 * Whenever {@link SimulatedAnnealing simulated annealing (SA)} is activated,
092 * and the SA phase has completed, convergence has probably not been reached
093 * yet; whenever it's the case, an additional (non-SA) search will be performed
094 * (using the current best simplex point as a start point).
095 * <p>
096 * Additional "best list" searches can be requested through setting the
097 * {@link PopulationSize} argument of the {@link #optimize(OptimizationData[])
098 * optimize} method.
099 *
100 * <p>
101 * This implementation does not directly support constrained optimization
102 * with simple bounds.
103 * The call to {@link #optimize(OptimizationData[]) optimize} will throw
104 * {@link MathUnsupportedOperationException} if bounds are passed to it.
105 *
106 * @see NelderMeadTransform
107 * @see MultiDirectionalTransform
108 * @see HedarFukushimaTransform
109 */
110public class SimplexOptimizer extends MultivariateOptimizer {
111    /** Default simplex side length ratio. */
112    private static final double SIMPLEX_SIDE_RATIO = 1e-1;
113    /** Simplex update function factory. */
114    private Simplex.TransformFactory updateRule;
115    /** Initial simplex. */
116    private Simplex initialSimplex;
117    /** Simulated annealing setup (optional). */
118    private SimulatedAnnealing simulatedAnnealing = null;
119    /** User-defined number of additional optimizations (optional). */
120    private int populationSize = 0;
121    /** Actual number of additional optimizations. */
122    private int additionalSearch = 0;
123    /** Callbacks. */
124    private final List<Observer> callbacks = new CopyOnWriteArrayList<>();
125
126    /**
127     * @param checker Convergence checker.
128     */
129    public SimplexOptimizer(ConvergenceChecker<PointValuePair> checker) {
130        super(checker);
131    }
132
133    /**
134     * @param rel Relative threshold.
135     * @param abs Absolute threshold.
136     */
137    public SimplexOptimizer(double rel,
138                            double abs) {
139        this(new SimpleValueChecker(rel, abs));
140    }
141
142    /**
143     * Callback interface for updating caller's code with the current
144     * state of the optimization.
145     */
146    @FunctionalInterface
147    public interface Observer {
148        /**
149         * Method called after each modification of the {@code simplex}.
150         *
151         * @param simplex Current simplex.
152         * @param isInit {@code true} at the start of a new search (either
153         * "main" or "best list"), after the initial simplex's vertices
154         * have been evaluated.
155         * @param numEval Number of evaluations of the objective function.
156         */
157        void update(Simplex simplex,
158                    boolean isInit,
159                    int numEval);
160    }
161
162    /**
163     * Register a callback.
164     *
165     * @param cb Callback.
166     */
167    public void addObserver(Observer cb) {
168        Objects.requireNonNull(cb, "Callback");
169        callbacks.add(cb);
170    }
171
172    /** {@inheritDoc} */
173    @Override
174    protected PointValuePair doOptimize() {
175        checkParameters();
176
177        // Indirect call to "computeObjectiveValue" in order to update the
178        // evaluations counter.
179        final MultivariateFunction evalFunc = this::computeObjectiveValue;
180
181        final boolean isMinim = getGoalType() == GoalType.MINIMIZE;
182        final Comparator<PointValuePair> comparator = (o1, o2) -> {
183            final double v1 = o1.getValue();
184            final double v2 = o2.getValue();
185            return isMinim ? Double.compare(v1, v2) : Double.compare(v2, v1);
186        };
187
188        // Start points for additional search.
189        final List<PointValuePair> bestList = new ArrayList<>();
190
191        Simplex currentSimplex = initialSimplex.translate(getStartPoint()).evaluate(evalFunc, comparator);
192        notifyObservers(currentSimplex, true);
193        double temperature = Double.NaN; // Only used with simulated annealing.
194        Simplex previousSimplex = null;
195
196        if (simulatedAnnealing != null) {
197            temperature =
198                temperature(currentSimplex.get(0),
199                            currentSimplex.get(currentSimplex.getDimension()),
200                            simulatedAnnealing.getStartProbability());
201        }
202
203        while (true) {
204            if (previousSimplex != null) { // Skip check at first iteration.
205                if (hasConverged(previousSimplex, currentSimplex)) {
206                    return currentSimplex.get(0);
207                }
208            }
209
210            // We still need to search.
211            previousSimplex = currentSimplex;
212
213            if (simulatedAnnealing != null) {
214                // Update current temperature.
215                temperature =
216                    simulatedAnnealing.getCoolingSchedule().apply(temperature,
217                                                                  currentSimplex);
218
219                final double endTemperature =
220                    temperature(currentSimplex.get(0),
221                                currentSimplex.get(currentSimplex.getDimension()),
222                                simulatedAnnealing.getEndProbability());
223
224                if (temperature < endTemperature) {
225                    break;
226                }
227
228                final UnaryOperator<Simplex> update =
229                    updateRule.create(evalFunc,
230                                      comparator,
231                                      simulatedAnnealing.metropolis(temperature));
232
233                for (int i = 0; i < simulatedAnnealing.getEpochDuration(); i++) {
234                    // Simplex is transformed (and observers are notified).
235                    currentSimplex = applyUpdate(update,
236                                                 currentSimplex,
237                                                 evalFunc,
238                                                 comparator);
239                }
240            } else {
241                // No simulated annealing.
242                final UnaryOperator<Simplex> update =
243                    updateRule.create(evalFunc, comparator, null);
244
245                // Simplex is transformed (and observers are notified).
246                currentSimplex = applyUpdate(update,
247                                             currentSimplex,
248                                             evalFunc,
249                                             comparator);
250            }
251
252            if (additionalSearch != 0) {
253                // In "bestList", we must keep track of at least two points
254                // in order to be able to compute the new initial simplex for
255                // the additional search.
256                final int max = Math.max(additionalSearch, 2);
257
258                // Store best points.
259                for (int i = 0; i < currentSimplex.getSize(); i++) {
260                    keepIfBetter(currentSimplex.get(i),
261                                 comparator,
262                                 bestList,
263                                 max);
264                }
265            }
266
267            incrementIterationCount();
268        }
269
270        // No convergence.
271
272        if (additionalSearch > 0) {
273            // Additional optimizations.
274            // Reference to counter in the "main" search in order to retrieve
275            // the total number of evaluations in the "best list" search.
276            final IntSupplier evalCount = () -> getEvaluations();
277
278            return bestListSearch(evalFunc,
279                                  comparator,
280                                  bestList,
281                                  evalCount);
282        }
283
284        throw new MathInternalError(); // Should never happen.
285    }
286
287    /**
288     * Scans the list of (required and optional) optimization data that
289     * characterize the problem.
290     *
291     * @param optData Optimization data.
292     * The following data will be looked for:
293     * <ul>
294     *  <li>{@link Simplex}</li>
295     *  <li>{@link Simplex.TransformFactory}</li>
296     *  <li>{@link SimulatedAnnealing}</li>
297     *  <li>{@link PopulationSize}</li>
298     * </ul>
299     */
300    @Override
301    protected void parseOptimizationData(OptimizationData... optData) {
302        // Allow base class to register its own data.
303        super.parseOptimizationData(optData);
304
305        // The existing values (as set by the previous call) are reused
306        // if not provided in the argument list.
307        for (OptimizationData data : optData) {
308            if (data instanceof Simplex) {
309                initialSimplex = (Simplex) data;
310            } else if (data instanceof Simplex.TransformFactory) {
311                updateRule = (Simplex.TransformFactory) data;
312            } else if (data instanceof SimulatedAnnealing) {
313                simulatedAnnealing = (SimulatedAnnealing) data;
314            } else if (data instanceof PopulationSize) {
315                populationSize = ((PopulationSize) data).getPopulationSize();
316            }
317        }
318    }
319
320    /**
321     * Detects whether the simplex has shrunk below the user-defined
322     * tolerance.
323     *
324     * @param previous Simplex at previous iteration.
325     * @param current Simplex at current iteration.
326     * @return {@code true} if convergence is considered achieved.
327     */
328    private boolean hasConverged(Simplex previous,
329                                 Simplex current) {
330        final ConvergenceChecker<PointValuePair> checker = getConvergenceChecker();
331
332        for (int i = 0; i < current.getSize(); i++) {
333            final PointValuePair prev = previous.get(i);
334            final PointValuePair curr = current.get(i);
335
336            if (!checker.converged(getIterations(), prev, curr)) {
337                return false;
338            }
339        }
340
341        return true;
342    }
343
344    /**
345     * @throws MathUnsupportedOperationException if bounds were passed to the
346     * {@link #optimize(OptimizationData[]) optimize} method.
347     * @throws NullPointerException if no initial simplex or no transform rule
348     * was passed to the {@link #optimize(OptimizationData[]) optimize} method.
349     * @throws IllegalArgumentException if {@link #populationSize} is negative.
350     */
351    private void checkParameters() {
352        Objects.requireNonNull(updateRule, "Update rule");
353        Objects.requireNonNull(initialSimplex, "Initial simplex");
354
355        if (getLowerBound() != null ||
356            getUpperBound() != null) {
357            throw new MathUnsupportedOperationException(LocalizedFormats.CONSTRAINT);
358        }
359
360        if (populationSize < 0) {
361            throw new IllegalArgumentException("Population size");
362        }
363
364        additionalSearch = simulatedAnnealing == null ?
365            Math.max(0, populationSize) :
366            Math.max(1, populationSize);
367    }
368
369    /**
370     * Computes the temperature as a function of the acceptance probability
371     * and the fitness difference between two of the simplex vertices (usually
372     * the best and worst points).
373     *
374     * @param p1 Simplex point.
375     * @param p2 Simplex point.
376     * @param prob Acceptance probability.
377     * @return the temperature.
378     */
379    private double temperature(PointValuePair p1,
380                               PointValuePair p2,
381                               double prob) {
382        return -Math.abs(p1.getValue() - p2.getValue()) / Math.log(prob);
383    }
384
385    /**
386     * Stores the given {@code candidate} if its fitness is better than
387     * that of the last (assumed to be the worst) point in {@code list}.
388     *
389     * <p>If the list is below the maximum size then the {@code candidate}
390     * is added if it is not already in the list. The list is sorted
391     * when it reaches the maximum size.
392     *
393     * @param candidate Point to be stored.
394     * @param comp Fitness comparator.
395     * @param list Starting points (modified in-place).
396     * @param max Maximum size of the {@code list}.
397     */
398    private static void keepIfBetter(PointValuePair candidate,
399                                     Comparator<PointValuePair> comp,
400                                     List<PointValuePair> list,
401                                     int max) {
402        final int listSize = list.size();
403        final double[] candidatePoint = candidate.getPoint();
404        if (listSize == 0) {
405            list.add(candidate);
406        } else if (listSize < max) {
407            // List is not fully populated yet.
408            for (PointValuePair p : list) {
409                final double[] pPoint = p.getPoint();
410                if (Arrays.equals(pPoint, candidatePoint)) {
411                    // Point was already stored.
412                    return;
413                }
414            }
415            // Store candidate.
416            list.add(candidate);
417            // Sort the list when required
418            if (list.size() == max) {
419                Collections.sort(list, comp);
420            }
421        } else {
422            final int last = max - 1;
423            if (comp.compare(candidate, list.get(last)) < 0) {
424                for (PointValuePair p : list) {
425                    final double[] pPoint = p.getPoint();
426                    if (Arrays.equals(pPoint, candidatePoint)) {
427                        // Point was already stored.
428                        return;
429                    }
430                }
431
432                // Store better candidate and reorder the list.
433                list.set(last, candidate);
434                Collections.sort(list, comp);
435            }
436        }
437    }
438
439    /**
440     * Computes the smallest distance between the given {@code point}
441     * and any of the other points in the {@code list}.
442     *
443     * @param point Point.
444     * @param list List.
445     * @return the smallest distance.
446     */
447    private static double shortestDistance(PointValuePair point,
448                                           List<PointValuePair> list) {
449        double minDist = Double.POSITIVE_INFINITY;
450
451        final double[] p = point.getPoint();
452        for (PointValuePair other : list) {
453            final double[] pOther = other.getPoint();
454            if (!Arrays.equals(p, pOther)) {
455                final double dist = MathArrays.distance(p, pOther);
456                if (dist < minDist) {
457                    minDist = dist;
458                }
459            }
460        }
461
462        return minDist;
463    }
464
465    /**
466     * Perform additional optimizations.
467     *
468     * @param evalFunc Objective function.
469     * @param comp Fitness comparator.
470     * @param bestList Best points encountered during the "main" search.
471     * List is assumed to be ordered from best to worst.
472     * @param evalCount Evaluation counter.
473     * @return the optimum.
474     */
475    private PointValuePair bestListSearch(MultivariateFunction evalFunc,
476                                          Comparator<PointValuePair> comp,
477                                          List<PointValuePair> bestList,
478                                          IntSupplier evalCount) {
479        PointValuePair best = bestList.get(0); // Overall best result.
480
481        // Additional local optimizations using each of the best
482        // points visited during the main search.
483        for (int i = 0; i < additionalSearch; i++) {
484            final PointValuePair start = bestList.get(i);
485            // Find shortest distance to the other points.
486            final double dist = shortestDistance(start, bestList);
487            final double[] init = start.getPoint();
488            // Create smaller initial simplex.
489            final Simplex simplex = Simplex.equalSidesAlongAxes(init.length,
490                                                                SIMPLEX_SIDE_RATIO * dist);
491
492            final PointValuePair r = directSearch(init,
493                                                  simplex,
494                                                  evalFunc,
495                                                  getConvergenceChecker(),
496                                                  getGoalType(),
497                                                  callbacks,
498                                                  evalCount);
499            if (comp.compare(r, best) < 0) {
500                best = r; // New overall best.
501            }
502        }
503
504        return best;
505    }
506
507    /**
508     * @param init Start point.
509     * @param simplex Initial simplex.
510     * @param eval Objective function.
511     * Note: It is assumed that evaluations of this function are
512     * incrementing the main counter.
513     * @param checker Convergence checker.
514     * @param goalType Whether to minimize or maximize the objective function.
515     * @param cbList Callbacks.
516     * @param evalCount Evaluation counter.
517     * @return the optimum.
518     */
519    private static PointValuePair directSearch(double[] init,
520                                               Simplex simplex,
521                                               MultivariateFunction eval,
522                                               ConvergenceChecker<PointValuePair> checker,
523                                               GoalType goalType,
524                                               List<Observer> cbList,
525                                               final IntSupplier evalCount) {
526        final SimplexOptimizer optim = new SimplexOptimizer(checker);
527
528        for (Observer cOrig : cbList) {
529            final SimplexOptimizer.Observer cNew = (spx, isInit, numEval) ->
530                cOrig.update(spx, isInit, evalCount.getAsInt());
531
532            optim.addObserver(cNew);
533        }
534
535        return optim.optimize(MaxEval.unlimited(),
536                              new ObjectiveFunction(eval),
537                              goalType,
538                              new InitialGuess(init),
539                              simplex,
540                              new MultiDirectionalTransform());
541    }
542
543    /**
544     * @param simplex Current simplex.
545     * @param isInit Set to {@code true} at the start of a new search
546     * (either "main" or "best list"), after the evaluation of the initial
547     * simplex's vertices.
548     */
549    private void notifyObservers(Simplex simplex,
550                                 boolean isInit) {
551        for (Observer cb : callbacks) {
552            cb.update(simplex,
553                      isInit,
554                      getEvaluations());
555        }
556    }
557
558    /**
559     * Applies the {@code update} to the given {@code simplex} (and notifies
560     * observers).
561     *
562     * @param update Simplex transformation.
563     * @param simplex Current simplex.
564     * @param eval Objective function.
565     * @param comp Fitness comparator.
566     * @return the transformed simplex.
567     */
568    private Simplex applyUpdate(UnaryOperator<Simplex> update,
569                                Simplex simplex,
570                                MultivariateFunction eval,
571                                Comparator<PointValuePair> comp) {
572        final Simplex transformed = update.apply(simplex).evaluate(eval, comp);
573
574        notifyObservers(transformed, false);
575
576        return transformed;
577    }
578}