001/* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017 018package org.apache.commons.numbers.combinatorics; 019 020/** 021 * Representation of the <a href="http://mathworld.wolfram.com/BinomialCoefficient.html"> 022 * binomial coefficient</a>, as a {@code double}. 023 * It is "{@code n choose k}", the number of {@code k}-element subsets that 024 * can be selected from an {@code n}-element set. 025 */ 026public final class BinomialCoefficientDouble { 027 /** The maximum factorial that can be represented as a double. */ 028 private static final int MAX_FACTORIAL = 170; 029 /** The maximum n that can be computed without overflow of a long for any m. 030 * {@code C(66, 33) < 2^63}. */ 031 private static final int LIMIT_N_LONG = 66; 032 /** The maximum m that can be computed without overflow of a double. 033 * C(1030, 515) ~ 2.85e308. */ 034 private static final int MAX_M = 514; 035 /** The maximum n that can be computed without intermediate overflow for any m. 036 * C(1020, 510) * 510 ~ 1.43e308. */ 037 private static final int SMALL_N = 1020; 038 /** The maximum m that can be computed without intermediate overflow for any n. 039 * C(2147483647, 37) * 37 ~ 5.13e303. */ 040 private static final int SMALL_M = 37; 041 042 /** Private constructor. */ 043 private BinomialCoefficientDouble() { 044 // intentionally empty. 045 } 046 047 /** 048 * Computes the binomial coefficient. 049 * 050 * <p>The largest value of {@code n} for which <em>all</em> coefficients can 051 * fit into a {@code double} is 1029. Larger {@code n} may result in 052 * infinity depending on the value of {@code k}. 053 * 054 * <p>Any {@code min(k, n - k) >= 515} cannot fit into a {@code double} 055 * and will result in infinity. 056 * 057 * @param n Size of the set. 058 * @param k Size of the subsets to be counted. 059 * @return {@code n choose k}. 060 * @throws IllegalArgumentException if {@code n < 0}, {@code k < 0} or {@code k > n}. 061 */ 062 public static double value(int n, int k) { 063 if (n <= LIMIT_N_LONG) { 064 // Delegate to the exact long result 065 return BinomialCoefficient.value(n, k); 066 } 067 final int m = BinomialCoefficient.checkBinomial(n, k); 068 069 if (m == 0) { 070 return 1; 071 } 072 if (m == 1) { 073 return n; 074 } 075 076 double result; 077 if (n <= MAX_FACTORIAL) { 078 // Small factorials are tabulated exactly 079 // n! / m! / (n-m)! 080 result = Factorial.uncheckedFactorial(n) / 081 Factorial.uncheckedFactorial(m) / 082 Factorial.uncheckedFactorial(n - m); 083 } else { 084 // Compute recursively using: 085 // (n choose m) = (n-1 choose m-1) * n / m 086 087 if (n <= SMALL_N || m <= SMALL_M) { 088 // No overflow possible 089 result = 1; 090 for (int i = 1; i <= m; i++) { 091 result *= n - m + i; 092 result /= i; 093 } 094 } else { 095 if (m > MAX_M) { 096 return Double.POSITIVE_INFINITY; 097 } 098 099 // Compute the initial part without overflow checks 100 result = 1; 101 for (int i = 1; i <= SMALL_M; i++) { 102 result *= n - m + i; 103 result /= i; 104 } 105 // Careful of overflow 106 for (int i = SMALL_M + 1; i <= m; i++) { 107 final double next = result * (n - m + i); 108 if (next > Double.MAX_VALUE) { 109 // Reverse order of terms 110 result /= i; 111 result *= n - m + i; 112 if (result > Double.MAX_VALUE) { 113 // Definite overflow 114 return Double.POSITIVE_INFINITY; 115 } 116 } else { 117 result = next / i; 118 } 119 } 120 } 121 } 122 123 return Math.floor(result + 0.5); 124 } 125}