001/* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017 018package org.apache.commons.numbers.complex; 019 020import java.io.Serializable; 021import java.util.ArrayList; 022import java.util.List; 023import java.util.function.DoubleUnaryOperator; 024 025/** 026 * Cartesian representation of a complex number. The complex number is expressed 027 * in the form \( a + ib \) where \( a \) and \( b \) are real numbers and \( i \) 028 * is the imaginary unit which satisfies the equation \( i^2 = -1 \). For the 029 * complex number \( a + ib \), \( a \) is called the <em>real part</em> and 030 * \( b \) is called the <em>imaginary part</em>. 031 * 032 * <p>This class is immutable. All arithmetic will create a new instance for the 033 * result.</p> 034 * 035 * <p>Arithmetic in this class conforms to the C99 standard for complex numbers 036 * defined in ISO/IEC 9899, Annex G. Methods have been named using the equivalent 037 * method in ISO C99. The behavior for special cases is listed as defined in C99.</p> 038 * 039 * <p>For functions \( f \) which obey the conjugate equality \( conj(f(z)) = f(conj(z)) \), 040 * the specifications for the upper half-plane imply the specifications for the lower 041 * half-plane.</p> 042 * 043 * <p>For functions that are either odd, \( f(z) = -f(-z) \), or even, \( f(z) = f(-z) \), 044 * the specifications for the first quadrant imply the specifications for the other three 045 * quadrants.</p> 046 * 047 * <p>Special cases of <a href="http://mathworld.wolfram.com/BranchCut.html">branch cuts</a> 048 * for multivalued functions adopt the principle value convention from C99. Specials cases 049 * from C99 that raise the "invalid" or "divide-by-zero" 050 * <a href="https://en.cppreference.com/w/c/numeric/fenv/FE_exceptions">floating-point 051 * exceptions</a> return the documented value without an explicit mechanism to notify 052 * of the exception case, that is no exceptions are thrown during computations in-line with 053 * the convention of the corresponding single-valued functions in 054 * {@link Math Math}. 055 * These cases are documented in the method special cases as "invalid" or "divide-by-zero" 056 * floating-point operation. 057 * Note: Invalid floating-point exception cases will result in a complex number where the 058 * cardinality of NaN component parts has increased as a real or imaginary part could 059 * not be computed and is set to NaN. 060 * 061 * @see <a href="http://www.open-std.org/JTC1/SC22/WG14/www/standards"> 062 * ISO/IEC 9899 - Programming languages - C</a> 063 */ 064public final class Complex implements Serializable { 065 /** 066 * A complex number representing \( i \), the square root of \( -1 \). 067 * 068 * <p>\( (0 + i 1) \). 069 */ 070 public static final Complex I = new Complex(0, 1); 071 /** 072 * A complex number representing one. 073 * 074 * <p>\( (1 + i 0) \). 075 */ 076 public static final Complex ONE = new Complex(1, 0); 077 /** 078 * A complex number representing zero. 079 * 080 * <p>\( (0 + i 0) \). 081 */ 082 public static final Complex ZERO = new Complex(0, 0); 083 084 /** A complex number representing {@code NaN + i NaN}. */ 085 private static final Complex NAN = new Complex(Double.NaN, Double.NaN); 086 /** π/2. */ 087 private static final double PI_OVER_2 = 0.5 * Math.PI; 088 /** π/4. */ 089 private static final double PI_OVER_4 = 0.25 * Math.PI; 090 /** Natural logarithm of 2 (ln(2)). */ 091 private static final double LN_2 = Math.log(2); 092 /** Base 10 logarithm of 10 divided by 2 (log10(e)/2). */ 093 private static final double LOG_10E_O_2 = Math.log10(Math.E) / 2; 094 /** Base 10 logarithm of 2 (log10(2)). */ 095 private static final double LOG10_2 = Math.log10(2); 096 /** {@code 1/2}. */ 097 private static final double HALF = 0.5; 098 /** {@code sqrt(2)}. */ 099 private static final double ROOT2 = 1.4142135623730951; 100 /** {@code 1.0 / sqrt(2)}. 101 * This is pre-computed to the closest double from the exact result. 102 * It is 1 ULP different from 1.0 / Math.sqrt(2) but equal to Math.sqrt(2) / 2. 103 */ 104 private static final double ONE_OVER_ROOT2 = 0.7071067811865476; 105 /** The bit representation of {@code -0.0}. */ 106 private static final long NEGATIVE_ZERO_LONG_BITS = Double.doubleToLongBits(-0.0); 107 /** Exponent offset in IEEE754 representation. */ 108 private static final int EXPONENT_OFFSET = 1023; 109 /** 110 * Largest double-precision floating-point number such that 111 * {@code 1 + EPSILON} is numerically equal to 1. This value is an upper 112 * bound on the relative error due to rounding real numbers to double 113 * precision floating-point numbers. 114 * 115 * <p>In IEEE 754 arithmetic, this is 2<sup>-53</sup>. 116 * Copied from o.a.c.numbers.Precision. 117 * 118 * @see <a href="http://en.wikipedia.org/wiki/Machine_epsilon">Machine epsilon</a> 119 */ 120 private static final double EPSILON = Double.longBitsToDouble((EXPONENT_OFFSET - 53L) << 52); 121 /** Mask to remove the sign bit from a long. */ 122 private static final long UNSIGN_MASK = 0x7fff_ffff_ffff_ffffL; 123 /** Mask to extract the 52-bit mantissa from a long representation of a double. */ 124 private static final long MANTISSA_MASK = 0x000f_ffff_ffff_ffffL; 125 /** The multiplier used to split the double value into hi and low parts. This must be odd 126 * and a value of 2^s + 1 in the range {@code p/2 <= s <= p-1} where p is the number of 127 * bits of precision of the floating point number. Here {@code s = 27}.*/ 128 private static final double MULTIPLIER = 1.34217729E8; 129 130 /** 131 * Crossover point to switch computation for asin/acos factor A. 132 * This has been updated from the 1.5 value used by Hull et al to 10 133 * as used in boost::math::complex. 134 * @see <a href="https://svn.boost.org/trac/boost/ticket/7290">Boost ticket 7290</a> 135 */ 136 private static final double A_CROSSOVER = 10.0; 137 /** Crossover point to switch computation for asin/acos factor B. */ 138 private static final double B_CROSSOVER = 0.6471; 139 /** 140 * The safe maximum double value {@code x} to avoid loss of precision in asin/acos. 141 * Equal to sqrt(M) / 8 in Hull, et al (1997) with M the largest normalised floating-point value. 142 */ 143 private static final double SAFE_MAX = Math.sqrt(Double.MAX_VALUE) / 8; 144 /** 145 * The safe minimum double value {@code x} to avoid loss of precision/underflow in asin/acos. 146 * Equal to sqrt(u) * 4 in Hull, et al (1997) with u the smallest normalised floating-point value. 147 */ 148 private static final double SAFE_MIN = Math.sqrt(Double.MIN_NORMAL) * 4; 149 /** 150 * The safe maximum double value {@code x} to avoid loss of precision in atanh. 151 * Equal to sqrt(M) / 2 with M the largest normalised floating-point value. 152 */ 153 private static final double SAFE_UPPER = Math.sqrt(Double.MAX_VALUE) / 2; 154 /** 155 * The safe minimum double value {@code x} to avoid loss of precision/underflow in atanh. 156 * Equal to sqrt(u) * 2 with u the smallest normalised floating-point value. 157 */ 158 private static final double SAFE_LOWER = Math.sqrt(Double.MIN_NORMAL) * 2; 159 /** The safe maximum double value {@code x} to avoid overflow in sqrt. */ 160 private static final double SQRT_SAFE_UPPER = Double.MAX_VALUE / 8; 161 /** 162 * A safe maximum double value {@code m} where {@code e^m} is not infinite. 163 * This can be used when functions require approximations of sinh(x) or cosh(x) 164 * when x is large using exp(x): 165 * <pre> 166 * sinh(x) = (e^x - e^-x) / 2 = sign(x) * e^|x| / 2 167 * cosh(x) = (e^x + e^-x) / 2 = e^|x| / 2 </pre> 168 * 169 * <p>This value can be used to approximate e^x using a product: 170 * 171 * <pre> 172 * e^x = product_n (e^m) * e^(x-nm) 173 * n = (int) x/m 174 * e.g. e^2000 = e^m * e^m * e^(2000 - 2m) </pre> 175 * 176 * <p>The value should be below ln(max_value) ~ 709.783. 177 * The value m is set to an integer for less error when subtracting m and chosen as 178 * even (m=708) as it is used as a threshold in tanh with m/2. 179 * 180 * <p>The value is used to compute e^x multiplied by a small number avoiding 181 * overflow (sinh/cosh) or a small number divided by e^x without underflow due to 182 * infinite e^x (tanh). The following conditions are used: 183 * <pre> 184 * 0.5 * e^m * Double.MIN_VALUE * e^m * e^m = Infinity 185 * 2.0 / e^m / e^m = 0.0 </pre> 186 */ 187 private static final double SAFE_EXP = 708; 188 /** 189 * The value of Math.exp(SAFE_EXP): e^708. 190 * To be used in overflow/underflow safe products of e^m to approximate e^x where {@code x > m}. 191 */ 192 private static final double EXP_M = Math.exp(SAFE_EXP); 193 194 /** 54 shifted 20-bits to align with the exponent of the upper 32-bits of a double. */ 195 private static final int EXP_54 = 0x36_00000; 196 /** Represents an exponent of 500 in unbiased form shifted 20-bits to align with the upper 32-bits of a double. */ 197 private static final int EXP_500 = 0x5f3_00000; 198 /** Represents an exponent of 1024 in unbiased form (infinite or nan) 199 * shifted 20-bits to align with the upper 32-bits of a double. */ 200 private static final int EXP_1024 = 0x7ff_00000; 201 /** Represents an exponent of -500 in unbiased form shifted 20-bits to align with the upper 32-bits of a double. */ 202 private static final int EXP_NEG_500 = 0x20b_00000; 203 /** 2^600. */ 204 private static final double TWO_POW_600 = 0x1.0p+600; 205 /** 2^-600. */ 206 private static final double TWO_POW_NEG_600 = 0x1.0p-600; 207 208 /** Serializable version identifier. */ 209 private static final long serialVersionUID = 20180201L; 210 211 /** 212 * The size of the buffer for {@link #toString()}. 213 * 214 * <p>The longest double will require a sign, a maximum of 17 digits, the decimal place 215 * and the exponent, e.g. for max value this is 24 chars: -1.7976931348623157e+308. 216 * Set the buffer size to twice this and round up to a power of 2 thus 217 * allowing for formatting characters. The size is 64. 218 */ 219 private static final int TO_STRING_SIZE = 64; 220 /** The minimum number of characters in the format. This is 5, e.g. {@code "(0,0)"}. */ 221 private static final int FORMAT_MIN_LEN = 5; 222 /** {@link #toString() String representation}. */ 223 private static final char FORMAT_START = '('; 224 /** {@link #toString() String representation}. */ 225 private static final char FORMAT_END = ')'; 226 /** {@link #toString() String representation}. */ 227 private static final char FORMAT_SEP = ','; 228 /** The minimum number of characters before the separator. This is 2, e.g. {@code "(0"}. */ 229 private static final int BEFORE_SEP = 2; 230 231 /** The imaginary part. */ 232 private final double imaginary; 233 /** The real part. */ 234 private final double real; 235 236 /** 237 * Define a constructor for a Complex. 238 * This is used in functions that implement trigonomic identities. 239 */ 240 @FunctionalInterface 241 private interface ComplexConstructor { 242 /** 243 * Create a complex number given the real and imaginary parts. 244 * 245 * @param real Real part. 246 * @param imaginary Imaginary part. 247 * @return {@code Complex} object. 248 */ 249 Complex create(double real, double imaginary); 250 } 251 252 /** 253 * Private default constructor. 254 * 255 * @param real Real part. 256 * @param imaginary Imaginary part. 257 */ 258 private Complex(double real, double imaginary) { 259 this.real = real; 260 this.imaginary = imaginary; 261 } 262 263 /** 264 * Create a complex number given the real and imaginary parts. 265 * 266 * @param real Real part. 267 * @param imaginary Imaginary part. 268 * @return {@code Complex} number. 269 */ 270 public static Complex ofCartesian(double real, double imaginary) { 271 return new Complex(real, imaginary); 272 } 273 274 /** 275 * Creates a complex number from its polar representation using modulus {@code rho} (\( \rho \)) 276 * and phase angle {@code theta} (\( \theta \)). 277 * 278 * \[ \begin{aligned} 279 * x &= \rho \cos(\theta) \\ 280 * y &= \rho \sin(\theta) \end{aligned} \] 281 * 282 * <p>Requires that {@code rho} is non-negative and non-NaN and {@code theta} is finite; 283 * otherwise returns a complex with NaN real and imaginary parts. A {@code rho} value of 284 * {@code -0.0} is considered negative and an invalid modulus. 285 * 286 * <p>A non-NaN complex number constructed using this method will satisfy the following 287 * to within floating-point error when {@code theta} is in the range 288 * \( -\pi\ \lt \theta \leq \pi \): 289 * 290 * <pre> 291 * Complex.ofPolar(rho, theta).abs() == rho 292 * Complex.ofPolar(rho, theta).arg() == theta</pre> 293 * 294 * <p>If {@code rho} is infinite then the resulting parts may be infinite or NaN 295 * following the rules for double arithmetic, for example:</p> 296 * 297 * <ul> 298 * <li>{@code ofPolar(}\( -0.0 \){@code , }\( 0 \){@code ) = }\( \text{NaN} + i \text{NaN} \) 299 * <li>{@code ofPolar(}\( 0.0 \){@code , }\( 0 \){@code ) = }\( 0 + i 0 \) 300 * <li>{@code ofPolar(}\( 1 \){@code , }\( 0 \){@code ) = }\( 1 + i 0 \) 301 * <li>{@code ofPolar(}\( 1 \){@code , }\( \pi \){@code ) = }\( -1 + i \sin(\pi) \) 302 * <li>{@code ofPolar(}\( \infty \){@code , }\( \pi \){@code ) = }\( -\infty + i \infty \) 303 * <li>{@code ofPolar(}\( \infty \){@code , }\( 0 \){@code ) = }\( -\infty + i \text{NaN} \) 304 * <li>{@code ofPolar(}\( \infty \){@code , }\( -\frac{\pi}{4} \){@code ) = }\( \infty - i \infty \) 305 * <li>{@code ofPolar(}\( \infty \){@code , }\( 5\frac{\pi}{4} \){@code ) = }\( -\infty - i \infty \) 306 * </ul> 307 * 308 * <p>This method is the functional equivalent of the C++ method {@code std::polar}. 309 * 310 * @param rho The modulus of the complex number. 311 * @param theta The argument of the complex number. 312 * @return {@code Complex} number. 313 * @see <a href="http://mathworld.wolfram.com/PolarCoordinates.html">Polar Coordinates</a> 314 */ 315 public static Complex ofPolar(double rho, double theta) { 316 // Require finite theta and non-negative, non-nan rho 317 if (!Double.isFinite(theta) || negative(rho) || Double.isNaN(rho)) { 318 return NAN; 319 } 320 final double x = rho * Math.cos(theta); 321 final double y = rho * Math.sin(theta); 322 return new Complex(x, y); 323 } 324 325 /** 326 * Create a complex cis number. This is also known as the complex exponential: 327 * 328 * \[ \text{cis}(x) = e^{ix} = \cos(x) + i \sin(x) \] 329 * 330 * @param x {@code double} to build the cis number. 331 * @return {@code Complex} cis number. 332 * @see <a href="http://mathworld.wolfram.com/Cis.html">Cis</a> 333 */ 334 public static Complex ofCis(double x) { 335 return new Complex(Math.cos(x), Math.sin(x)); 336 } 337 338 /** 339 * Returns a {@code Complex} instance representing the specified string {@code s}. 340 * 341 * <p>If {@code s} is {@code null}, then a {@code NullPointerException} is thrown. 342 * 343 * <p>The string must be in a format compatible with that produced by 344 * {@link #toString() Complex.toString()}. 345 * The format expects a start and end parentheses surrounding two numeric parts split 346 * by a separator. Leading and trailing spaces are allowed around each numeric part. 347 * Each numeric part is parsed using {@link Double#parseDouble(String)}. The parts 348 * are interpreted as the real and imaginary parts of the complex number. 349 * 350 * <p>Examples of valid strings and the equivalent {@code Complex} are shown below: 351 * 352 * <pre> 353 * "(0,0)" = Complex.ofCartesian(0, 0) 354 * "(0.0,0.0)" = Complex.ofCartesian(0, 0) 355 * "(-0.0, 0.0)" = Complex.ofCartesian(-0.0, 0) 356 * "(-1.23, 4.56)" = Complex.ofCartesian(-1.23, 4.56) 357 * "(1e300,-1.1e-2)" = Complex.ofCartesian(1e300, -1.1e-2)</pre> 358 * 359 * @param s String representation. 360 * @return {@code Complex} number. 361 * @throws NullPointerException if the string is null. 362 * @throws NumberFormatException if the string does not contain a parsable complex number. 363 * @see Double#parseDouble(String) 364 * @see #toString() 365 */ 366 public static Complex parse(String s) { 367 final int len = s.length(); 368 if (len < FORMAT_MIN_LEN) { 369 throw new NumberFormatException( 370 parsingExceptionMsg("Input too short, expected format", 371 FORMAT_START + "x" + FORMAT_SEP + "y" + FORMAT_END, s)); 372 } 373 374 // Confirm start: '(' 375 if (s.charAt(0) != FORMAT_START) { 376 throw new NumberFormatException( 377 parsingExceptionMsg("Expected start delimiter", FORMAT_START, s)); 378 } 379 380 // Confirm end: ')' 381 if (s.charAt(len - 1) != FORMAT_END) { 382 throw new NumberFormatException( 383 parsingExceptionMsg("Expected end delimiter", FORMAT_END, s)); 384 } 385 386 // Confirm separator ',' is between at least 2 characters from 387 // either end: "(x,x)" 388 // Count back from the end ignoring the last 2 characters. 389 final int sep = s.lastIndexOf(FORMAT_SEP, len - 3); 390 if (sep < BEFORE_SEP) { 391 throw new NumberFormatException( 392 parsingExceptionMsg("Expected separator between two numbers", FORMAT_SEP, s)); 393 } 394 395 // Should be no more separators 396 if (s.indexOf(FORMAT_SEP, sep + 1) != -1) { 397 throw new NumberFormatException( 398 parsingExceptionMsg("Incorrect number of parts, expected only 2 using separator", 399 FORMAT_SEP, s)); 400 } 401 402 // Try to parse the parts 403 404 final String rePart = s.substring(1, sep); 405 final double re; 406 try { 407 re = Double.parseDouble(rePart); 408 } catch (final NumberFormatException ex) { 409 throw new NumberFormatException( 410 parsingExceptionMsg("Could not parse real part", rePart, s)); 411 } 412 413 final String imPart = s.substring(sep + 1, len - 1); 414 final double im; 415 try { 416 im = Double.parseDouble(imPart); 417 } catch (final NumberFormatException ex) { 418 throw new NumberFormatException( 419 parsingExceptionMsg("Could not parse imaginary part", imPart, s)); 420 } 421 422 return ofCartesian(re, im); 423 } 424 425 /** 426 * Creates an exception message. 427 * 428 * @param message Message prefix. 429 * @param error Input that caused the error. 430 * @param s String representation. 431 * @return A message. 432 */ 433 private static String parsingExceptionMsg(String message, 434 Object error, 435 String s) { 436 final StringBuilder sb = new StringBuilder(100) 437 .append(message) 438 .append(" '").append(error) 439 .append("' for input \"").append(s).append('"'); 440 return sb.toString(); 441 } 442 443 /** 444 * Gets the real part \( a \) of this complex number \( (a + i b) \). 445 * 446 * @return The real part. 447 */ 448 public double getReal() { 449 return real; 450 } 451 452 /** 453 * Gets the real part \( a \) of this complex number \( (a + i b) \). 454 * 455 * <p>This method is the equivalent of the C++ method {@code std::complex::real}. 456 * 457 * @return The real part. 458 * @see #getReal() 459 */ 460 public double real() { 461 return getReal(); 462 } 463 464 /** 465 * Gets the imaginary part \( b \) of this complex number \( (a + i b) \). 466 * 467 * @return The imaginary part. 468 */ 469 public double getImaginary() { 470 return imaginary; 471 } 472 473 /** 474 * Gets the imaginary part \( b \) of this complex number \( (a + i b) \). 475 * 476 * <p>This method is the equivalent of the C++ method {@code std::complex::imag}. 477 * 478 * @return The imaginary part. 479 * @see #getImaginary() 480 */ 481 public double imag() { 482 return getImaginary(); 483 } 484 485 /** 486 * Returns the absolute value of this complex number. This is also called complex norm, modulus, 487 * or magnitude. 488 * 489 * <p>\[ \text{abs}(x + i y) = \sqrt{(x^2 + y^2)} \] 490 * 491 * <p>Special cases: 492 * 493 * <ul> 494 * <li>{@code abs(x + iy) == abs(y + ix) == abs(x - iy)}. 495 * <li>If {@code z} is ±∞ + iy for any y, returns +∞. 496 * <li>If {@code z} is x + iNaN for non-infinite x, returns NaN. 497 * <li>If {@code z} is x + i0, returns |x|. 498 * </ul> 499 * 500 * <p>The cases ensure that if either component is infinite then the result is positive 501 * infinity. If either component is NaN and this is not {@link #isInfinite() infinite} then 502 * the result is NaN. 503 * 504 * <p>This method follows the 505 * <a href="http://www.iso-9899.info/wiki/The_Standard">ISO C Standard</a>, Annex G, 506 * in calculating the returned value without intermediate overflow or underflow. 507 * 508 * <p>The computed result will be within 1 ulp of the exact result. 509 * 510 * @return The absolute value. 511 * @see #isInfinite() 512 * @see #isNaN() 513 * @see <a href="http://mathworld.wolfram.com/ComplexModulus.html">Complex modulus</a> 514 */ 515 public double abs() { 516 return abs(real, imaginary); 517 } 518 519 /** 520 * Returns the absolute value of the complex number. 521 * <pre>abs(x + i y) = sqrt(x^2 + y^2)</pre> 522 * 523 * <p>This should satisfy the special cases of the hypot function in ISO C99 F.9.4.3: 524 * "The hypot functions compute the square root of the sum of the squares of x and y, 525 * without undue overflow or underflow." 526 * 527 * <ul> 528 * <li>hypot(x, y), hypot(y, x), and hypot(x, −y) are equivalent. 529 * <li>hypot(x, ±0) is equivalent to |x|. 530 * <li>hypot(±∞, y) returns +∞, even if y is a NaN. 531 * </ul> 532 * 533 * <p>This method is called by all methods that require the absolute value of the complex 534 * number, e.g. abs(), sqrt() and log(). 535 * 536 * @param real Real part. 537 * @param imaginary Imaginary part. 538 * @return The absolute value. 539 */ 540 private static double abs(double real, double imaginary) { 541 // Specialised implementation of hypot. 542 // See NUMBERS-143 543 return hypot(real, imaginary); 544 } 545 546 /** 547 * Returns the argument of this complex number. 548 * 549 * <p>The argument is the angle phi between the positive real axis and 550 * the point representing this number in the complex plane. 551 * The value returned is between \( -\pi \) (not inclusive) 552 * and \( \pi \) (inclusive), with negative values returned for numbers with 553 * negative imaginary parts. 554 * 555 * <p>If either real or imaginary part (or both) is NaN, then the result is NaN. 556 * Infinite parts are handled as {@linkplain Math#atan2} handles them, 557 * essentially treating finite parts as zero in the presence of an 558 * infinite coordinate and returning a multiple of \( \frac{\pi}{4} \) depending on 559 * the signs of the infinite parts. 560 * 561 * <p>This code follows the 562 * <a href="http://www.iso-9899.info/wiki/The_Standard">ISO C Standard</a>, Annex G, 563 * in calculating the returned value using the {@code atan2(y, x)} method for complex 564 * \( x + iy \). 565 * 566 * @return The argument of this complex number. 567 * @see Math#atan2(double, double) 568 */ 569 public double arg() { 570 // Delegate 571 return Math.atan2(imaginary, real); 572 } 573 574 /** 575 * Returns the squared norm value of this complex number. This is also called the absolute 576 * square. 577 * 578 * <p>\[ \text{norm}(x + i y) = x^2 + y^2 \] 579 * 580 * <p>If either component is infinite then the result is positive infinity. If either 581 * component is NaN and this is not {@link #isInfinite() infinite} then the result is NaN. 582 * 583 * <p>Note: This method may not return the same value as the square of {@link #abs()} as 584 * that method uses an extended precision computation. 585 * 586 * <p>{@code norm()} can be used as a faster alternative than {@code abs()} for ranking by 587 * magnitude. If used for ranking any overflow to infinity will create an equal ranking for 588 * values that may be still distinguished by {@code abs()}. 589 * 590 * @return The square norm value. 591 * @see #isInfinite() 592 * @see #isNaN() 593 * @see #abs() 594 * @see <a href="http://mathworld.wolfram.com/AbsoluteSquare.html">Absolute square</a> 595 */ 596 public double norm() { 597 if (isInfinite()) { 598 return Double.POSITIVE_INFINITY; 599 } 600 return real * real + imaginary * imaginary; 601 } 602 603 /** 604 * Returns {@code true} if either the real <em>or</em> imaginary component of the complex number is NaN 605 * <em>and</em> the complex number is not infinite. 606 * 607 * <p>Note that: 608 * <ul> 609 * <li>There is more than one complex number that can return {@code true}. 610 * <li>Different representations of NaN can be distinguished by the 611 * {@link #equals(Object) Complex.equals(Object)} method. 612 * </ul> 613 * 614 * @return {@code true} if this instance contains NaN and no infinite parts. 615 * @see Double#isNaN(double) 616 * @see #isInfinite() 617 * @see #equals(Object) Complex.equals(Object) 618 */ 619 public boolean isNaN() { 620 if (Double.isNaN(real) || Double.isNaN(imaginary)) { 621 return !isInfinite(); 622 } 623 return false; 624 } 625 626 /** 627 * Returns {@code true} if either real or imaginary component of the complex number is infinite. 628 * 629 * <p>Note: A complex number with at least one infinite part is regarded 630 * as an infinity (even if its other part is a NaN). 631 * 632 * @return {@code true} if this instance contains an infinite value. 633 * @see Double#isInfinite(double) 634 */ 635 public boolean isInfinite() { 636 return Double.isInfinite(real) || Double.isInfinite(imaginary); 637 } 638 639 /** 640 * Returns {@code true} if both real and imaginary component of the complex number are finite. 641 * 642 * @return {@code true} if this instance contains finite values. 643 * @see Double#isFinite(double) 644 */ 645 public boolean isFinite() { 646 return Double.isFinite(real) && Double.isFinite(imaginary); 647 } 648 649 /** 650 * Returns the 651 * <a href="http://mathworld.wolfram.com/ComplexConjugate.html">conjugate</a> 652 * \( \overline{z} \) of this complex number \( z \). 653 * 654 * <p>\[ \begin{aligned} 655 * z &= a + i b \\ 656 * \overline{z} &= a - i b \end{aligned}\] 657 * 658 * @return The conjugate (\( \overline{z} \)) of this complex number. 659 */ 660 public Complex conj() { 661 return new Complex(real, -imaginary); 662 } 663 664 /** 665 * Returns a {@code Complex} whose value is the negation of both the real and imaginary parts 666 * of complex number \( z \). 667 * 668 * <p>\[ \begin{aligned} 669 * z &= a + i b \\ 670 * -z &= -a - i b \end{aligned} \] 671 * 672 * @return \( -z \). 673 */ 674 public Complex negate() { 675 return new Complex(-real, -imaginary); 676 } 677 678 /** 679 * Returns the projection of this complex number onto the Riemann sphere. 680 * 681 * <p>\( z \) projects to \( z \), except that all complex infinities (even those 682 * with one infinite part and one NaN part) project to positive infinity on the real axis. 683 * 684 * If \( z \) has an infinite part, then {@code z.proj()} shall be equivalent to: 685 * 686 * <pre>return Complex.ofCartesian(Double.POSITIVE_INFINITY, Math.copySign(0.0, z.imag());</pre> 687 * 688 * @return \( z \) projected onto the Riemann sphere. 689 * @see #isInfinite() 690 * @see <a href="http://pubs.opengroup.org/onlinepubs/9699919799/functions/cproj.html"> 691 * IEEE and ISO C standards: cproj</a> 692 */ 693 public Complex proj() { 694 if (isInfinite()) { 695 return new Complex(Double.POSITIVE_INFINITY, Math.copySign(0.0, imaginary)); 696 } 697 return this; 698 } 699 700 /** 701 * Returns a {@code Complex} whose value is {@code (this + addend)}. 702 * Implements the formula: 703 * 704 * <p>\[ (a + i b) + (c + i d) = (a + c) + i (b + d) \] 705 * 706 * @param addend Value to be added to this complex number. 707 * @return {@code this + addend}. 708 * @see <a href="http://mathworld.wolfram.com/ComplexAddition.html">Complex Addition</a> 709 */ 710 public Complex add(Complex addend) { 711 return new Complex(real + addend.real, 712 imaginary + addend.imaginary); 713 } 714 715 /** 716 * Returns a {@code Complex} whose value is {@code (this + addend)}, 717 * with {@code addend} interpreted as a real number. 718 * Implements the formula: 719 * 720 * <p>\[ (a + i b) + c = (a + c) + i b \] 721 * 722 * <p>This method is included for compatibility with ISO C99 which defines arithmetic between 723 * real-only and complex numbers.</p> 724 * 725 * <p>Note: This method preserves the sign of the imaginary component \( b \) if it is {@code -0.0}. 726 * The sign would be lost if adding \( (c + i 0) \) using 727 * {@link #add(Complex) add(Complex.ofCartesian(addend, 0))} since 728 * {@code -0.0 + 0.0 = 0.0}. 729 * 730 * @param addend Value to be added to this complex number. 731 * @return {@code this + addend}. 732 * @see #add(Complex) 733 * @see #ofCartesian(double, double) 734 */ 735 public Complex add(double addend) { 736 return new Complex(real + addend, imaginary); 737 } 738 739 /** 740 * Returns a {@code Complex} whose value is {@code (this + addend)}, 741 * with {@code addend} interpreted as an imaginary number. 742 * Implements the formula: 743 * 744 * <p>\[ (a + i b) + i d = a + i (b + d) \] 745 * 746 * <p>This method is included for compatibility with ISO C99 which defines arithmetic between 747 * imaginary-only and complex numbers.</p> 748 * 749 * <p>Note: This method preserves the sign of the real component \( a \) if it is {@code -0.0}. 750 * The sign would be lost if adding \( (0 + i d) \) using 751 * {@link #add(Complex) add(Complex.ofCartesian(0, addend))} since 752 * {@code -0.0 + 0.0 = 0.0}. 753 * 754 * @param addend Value to be added to this complex number. 755 * @return {@code this + addend}. 756 * @see #add(Complex) 757 * @see #ofCartesian(double, double) 758 */ 759 public Complex addImaginary(double addend) { 760 return new Complex(real, imaginary + addend); 761 } 762 763 /** 764 * Returns a {@code Complex} whose value is {@code (this - subtrahend)}. 765 * Implements the formula: 766 * 767 * <p>\[ (a + i b) - (c + i d) = (a - c) + i (b - d) \] 768 * 769 * @param subtrahend Value to be subtracted from this complex number. 770 * @return {@code this - subtrahend}. 771 * @see <a href="http://mathworld.wolfram.com/ComplexSubtraction.html">Complex Subtraction</a> 772 */ 773 public Complex subtract(Complex subtrahend) { 774 return new Complex(real - subtrahend.real, 775 imaginary - subtrahend.imaginary); 776 } 777 778 /** 779 * Returns a {@code Complex} whose value is {@code (this - subtrahend)}, 780 * with {@code subtrahend} interpreted as a real number. 781 * Implements the formula: 782 * 783 * <p>\[ (a + i b) - c = (a - c) + i b \] 784 * 785 * <p>This method is included for compatibility with ISO C99 which defines arithmetic between 786 * real-only and complex numbers.</p> 787 * 788 * @param subtrahend Value to be subtracted from this complex number. 789 * @return {@code this - subtrahend}. 790 * @see #subtract(Complex) 791 */ 792 public Complex subtract(double subtrahend) { 793 return new Complex(real - subtrahend, imaginary); 794 } 795 796 /** 797 * Returns a {@code Complex} whose value is {@code (this - subtrahend)}, 798 * with {@code subtrahend} interpreted as an imaginary number. 799 * Implements the formula: 800 * 801 * <p>\[ (a + i b) - i d = a + i (b - d) \] 802 * 803 * <p>This method is included for compatibility with ISO C99 which defines arithmetic between 804 * imaginary-only and complex numbers.</p> 805 * 806 * @param subtrahend Value to be subtracted from this complex number. 807 * @return {@code this - subtrahend}. 808 * @see #subtract(Complex) 809 */ 810 public Complex subtractImaginary(double subtrahend) { 811 return new Complex(real, imaginary - subtrahend); 812 } 813 814 /** 815 * Returns a {@code Complex} whose value is {@code (minuend - this)}, 816 * with {@code minuend} interpreted as a real number. 817 * Implements the formula: 818 * \[ c - (a + i b) = (c - a) - i b \] 819 * 820 * <p>This method is included for compatibility with ISO C99 which defines arithmetic between 821 * real-only and complex numbers.</p> 822 * 823 * <p>Note: This method inverts the sign of the imaginary component \( b \) if it is {@code 0.0}. 824 * The sign would not be inverted if subtracting from \( c + i 0 \) using 825 * {@link #subtract(Complex) Complex.ofCartesian(minuend, 0).subtract(this)} since 826 * {@code 0.0 - 0.0 = 0.0}. 827 * 828 * @param minuend Value this complex number is to be subtracted from. 829 * @return {@code minuend - this}. 830 * @see #subtract(Complex) 831 * @see #ofCartesian(double, double) 832 */ 833 public Complex subtractFrom(double minuend) { 834 return new Complex(minuend - real, -imaginary); 835 } 836 837 /** 838 * Returns a {@code Complex} whose value is {@code (this - subtrahend)}, 839 * with {@code minuend} interpreted as an imaginary number. 840 * Implements the formula: 841 * \[ i d - (a + i b) = -a + i (d - b) \] 842 * 843 * <p>This method is included for compatibility with ISO C99 which defines arithmetic between 844 * imaginary-only and complex numbers.</p> 845 * 846 * <p>Note: This method inverts the sign of the real component \( a \) if it is {@code 0.0}. 847 * The sign would not be inverted if subtracting from \( 0 + i d \) using 848 * {@link #subtract(Complex) Complex.ofCartesian(0, minuend).subtract(this)} since 849 * {@code 0.0 - 0.0 = 0.0}. 850 * 851 * @param minuend Value this complex number is to be subtracted from. 852 * @return {@code this - subtrahend}. 853 * @see #subtract(Complex) 854 * @see #ofCartesian(double, double) 855 */ 856 public Complex subtractFromImaginary(double minuend) { 857 return new Complex(-real, minuend - imaginary); 858 } 859 860 /** 861 * Returns a {@code Complex} whose value is {@code this * factor}. 862 * Implements the formula: 863 * 864 * <p>\[ (a + i b)(c + i d) = (ac - bd) + i (ad + bc) \] 865 * 866 * <p>Recalculates to recover infinities as specified in C99 standard G.5.1. 867 * 868 * @param factor Value to be multiplied by this complex number. 869 * @return {@code this * factor}. 870 * @see <a href="http://mathworld.wolfram.com/ComplexMultiplication.html">Complex Muliplication</a> 871 */ 872 public Complex multiply(Complex factor) { 873 return multiply(real, imaginary, factor.real, factor.imaginary); 874 } 875 876 /** 877 * Returns a {@code Complex} whose value is: 878 * <pre> 879 * (a + i b)(c + i d) = (ac - bd) + i (ad + bc)</pre> 880 * 881 * <p>Recalculates to recover infinities as specified in C99 standard G.5.1. 882 * 883 * @param re1 Real component of first number. 884 * @param im1 Imaginary component of first number. 885 * @param re2 Real component of second number. 886 * @param im2 Imaginary component of second number. 887 * @return (a + b i)(c + d i). 888 */ 889 private static Complex multiply(double re1, double im1, double re2, double im2) { 890 double a = re1; 891 double b = im1; 892 double c = re2; 893 double d = im2; 894 final double ac = a * c; 895 final double bd = b * d; 896 final double ad = a * d; 897 final double bc = b * c; 898 double x = ac - bd; 899 double y = ad + bc; 900 901 // -------------- 902 // NaN can occur if: 903 // - any of (a,b,c,d) are NaN (for NaN or Infinite complex numbers) 904 // - a multiplication of infinity by zero (ac,bd,ad,bc). 905 // - a subtraction of infinity from infinity (e.g. ac - bd) 906 // Note that (ac,bd,ad,bc) can be infinite due to overflow. 907 // 908 // Detect a NaN result and perform correction. 909 // 910 // Modification from the listing in ISO C99 G.5.1 (6) 911 // Do not correct infinity multiplied by zero. This is left as NaN. 912 // -------------- 913 914 if (Double.isNaN(x) && Double.isNaN(y)) { 915 // Recover infinities that computed as NaN+iNaN ... 916 boolean recalc = false; 917 if ((Double.isInfinite(a) || Double.isInfinite(b)) && 918 isNotZero(c, d)) { 919 // This complex is infinite. 920 // "Box" the infinity and change NaNs in the other factor to 0. 921 a = boxInfinity(a); 922 b = boxInfinity(b); 923 c = changeNaNtoZero(c); 924 d = changeNaNtoZero(d); 925 recalc = true; 926 } 927 if ((Double.isInfinite(c) || Double.isInfinite(d)) && 928 isNotZero(a, b)) { 929 // The other complex is infinite. 930 // "Box" the infinity and change NaNs in the other factor to 0. 931 c = boxInfinity(c); 932 d = boxInfinity(d); 933 a = changeNaNtoZero(a); 934 b = changeNaNtoZero(b); 935 recalc = true; 936 } 937 if (!recalc && (Double.isInfinite(ac) || Double.isInfinite(bd) || 938 Double.isInfinite(ad) || Double.isInfinite(bc))) { 939 // The result overflowed to infinity. 940 // Recover infinities from overflow by changing NaNs to 0 ... 941 a = changeNaNtoZero(a); 942 b = changeNaNtoZero(b); 943 c = changeNaNtoZero(c); 944 d = changeNaNtoZero(d); 945 recalc = true; 946 } 947 if (recalc) { 948 x = Double.POSITIVE_INFINITY * (a * c - b * d); 949 y = Double.POSITIVE_INFINITY * (a * d + b * c); 950 } 951 } 952 return new Complex(x, y); 953 } 954 955 /** 956 * Box values for the real or imaginary component of an infinite complex number. 957 * Any infinite value will be returned as one. Non-infinite values will be returned as zero. 958 * The sign is maintained. 959 * 960 * <pre> 961 * inf = 1 962 * -inf = -1 963 * x = 0 964 * -x = -0 965 * </pre> 966 * 967 * @param component the component 968 * @return The boxed value 969 */ 970 private static double boxInfinity(double component) { 971 return Math.copySign(Double.isInfinite(component) ? 1.0 : 0.0, component); 972 } 973 974 /** 975 * Checks if the complex number is not zero. 976 * 977 * @param real the real component 978 * @param imaginary the imaginary component 979 * @return true if the complex is not zero 980 */ 981 private static boolean isNotZero(double real, double imaginary) { 982 // The use of equals is deliberate. 983 // This method must distinguish NaN from zero thus ruling out: 984 // (real != 0.0 || imaginary != 0.0) 985 return !(real == 0.0 && imaginary == 0.0); 986 } 987 988 /** 989 * Change NaN to zero preserving the sign; otherwise return the value. 990 * 991 * @param value the value 992 * @return The new value 993 */ 994 private static double changeNaNtoZero(double value) { 995 return Double.isNaN(value) ? Math.copySign(0.0, value) : value; 996 } 997 998 /** 999 * Returns a {@code Complex} whose value is {@code this * factor}, with {@code factor} 1000 * interpreted as a real number. 1001 * Implements the formula: 1002 * 1003 * <p>\[ (a + i b) c = (ac) + i (bc) \] 1004 * 1005 * <p>This method is included for compatibility with ISO C99 which defines arithmetic between 1006 * real-only and complex numbers.</p> 1007 * 1008 * <p>Note: This method should be preferred over using 1009 * {@link #multiply(Complex) multiply(Complex.ofCartesian(factor, 0))}. Multiplication 1010 * can generate signed zeros if either {@code this} complex has zeros for the real 1011 * and/or imaginary component, or if the factor is zero. The summation of signed zeros 1012 * in {@link #multiply(Complex)} may create zeros in the result that differ in sign 1013 * from the equivalent call to multiply by a real-only number. 1014 * 1015 * @param factor Value to be multiplied by this complex number. 1016 * @return {@code this * factor}. 1017 * @see #multiply(Complex) 1018 */ 1019 public Complex multiply(double factor) { 1020 return new Complex(real * factor, imaginary * factor); 1021 } 1022 1023 /** 1024 * Returns a {@code Complex} whose value is {@code this * factor}, with {@code factor} 1025 * interpreted as an imaginary number. 1026 * Implements the formula: 1027 * 1028 * <p>\[ (a + i b) id = (-bd) + i (ad) \] 1029 * 1030 * <p>This method can be used to compute the multiplication of this complex number \( z \) 1031 * by \( i \) using a factor with magnitude 1.0. This should be used in preference to 1032 * {@link #multiply(Complex) multiply(Complex.I)} with or without {@link #negate() negation}:</p> 1033 * 1034 * \[ \begin{aligned} 1035 * iz &= (-b + i a) \\ 1036 * -iz &= (b - i a) \end{aligned} \] 1037 * 1038 * <p>This method is included for compatibility with ISO C99 which defines arithmetic between 1039 * imaginary-only and complex numbers.</p> 1040 * 1041 * <p>Note: This method should be preferred over using 1042 * {@link #multiply(Complex) multiply(Complex.ofCartesian(0, factor))}. Multiplication 1043 * can generate signed zeros if either {@code this} complex has zeros for the real 1044 * and/or imaginary component, or if the factor is zero. The summation of signed zeros 1045 * in {@link #multiply(Complex)} may create zeros in the result that differ in sign 1046 * from the equivalent call to multiply by an imaginary-only number. 1047 * 1048 * @param factor Value to be multiplied by this complex number. 1049 * @return {@code this * factor}. 1050 * @see #multiply(Complex) 1051 */ 1052 public Complex multiplyImaginary(double factor) { 1053 return new Complex(-imaginary * factor, real * factor); 1054 } 1055 1056 /** 1057 * Returns a {@code Complex} whose value is {@code (this / divisor)}. 1058 * Implements the formula: 1059 * 1060 * <p>\[ \frac{a + i b}{c + i d} = \frac{(ac + bd) + i (bc - ad)}{c^2+d^2} \] 1061 * 1062 * <p>Re-calculates NaN result values to recover infinities as specified in C99 standard G.5.1. 1063 * 1064 * @param divisor Value by which this complex number is to be divided. 1065 * @return {@code this / divisor}. 1066 * @see <a href="http://mathworld.wolfram.com/ComplexDivision.html">Complex Division</a> 1067 */ 1068 public Complex divide(Complex divisor) { 1069 return divide(real, imaginary, divisor.real, divisor.imaginary); 1070 } 1071 1072 /** 1073 * Returns a {@code Complex} whose value is: 1074 * <pre> 1075 * <code> 1076 * a + i b (ac + bd) + i (bc - ad) 1077 * ------- = ----------------------- 1078 * c + i d c<sup>2</sup> + d<sup>2</sup> 1079 * </code> 1080 * </pre> 1081 * 1082 * <p>Recalculates to recover infinities as specified in C99 1083 * standard G.5.1. Method is fully in accordance with 1084 * C++11 standards for complex numbers.</p> 1085 * 1086 * <p>Note: In the event of divide by zero this method produces the same result 1087 * as dividing by a real-only zero using {@link #divide(double)}. 1088 * 1089 * @param re1 Real component of first number. 1090 * @param im1 Imaginary component of first number. 1091 * @param re2 Real component of second number. 1092 * @param im2 Imaginary component of second number. 1093 * @return (a + i b) / (c + i d). 1094 * @see <a href="http://mathworld.wolfram.com/ComplexDivision.html">Complex Division</a> 1095 * @see #divide(double) 1096 */ 1097 private static Complex divide(double re1, double im1, double re2, double im2) { 1098 double a = re1; 1099 double b = im1; 1100 double c = re2; 1101 double d = im2; 1102 int ilogbw = 0; 1103 // Get the exponent to scale the divisor parts to the range [1, 2). 1104 final int exponent = getScale(c, d); 1105 if (exponent <= Double.MAX_EXPONENT) { 1106 ilogbw = exponent; 1107 c = Math.scalb(c, -ilogbw); 1108 d = Math.scalb(d, -ilogbw); 1109 } 1110 final double denom = c * c + d * d; 1111 1112 // Note: Modification from the listing in ISO C99 G.5.1 (8): 1113 // Avoid overflow if a or b are very big. 1114 // Since (c, d) in the range [1, 2) the sum (ac + bd) could overflow 1115 // when (a, b) are both above (Double.MAX_VALUE / 4). The same applies to 1116 // (bc - ad) with large negative values. 1117 // Use the maximum exponent as an approximation to the magnitude. 1118 if (getMaxExponent(a, b) > Double.MAX_EXPONENT - 2) { 1119 ilogbw -= 2; 1120 a /= 4; 1121 b /= 4; 1122 } 1123 1124 double x = Math.scalb((a * c + b * d) / denom, -ilogbw); 1125 double y = Math.scalb((b * c - a * d) / denom, -ilogbw); 1126 // Recover infinities and zeros that computed as NaN+iNaN 1127 // the only cases are nonzero/zero, infinite/finite, and finite/infinite, ... 1128 if (Double.isNaN(x) && Double.isNaN(y)) { 1129 if (denom == 0.0 && 1130 (!Double.isNaN(a) || !Double.isNaN(b))) { 1131 // nonzero/zero 1132 // This case produces the same result as divide by a real-only zero 1133 // using Complex.divide(+/-0.0) 1134 x = Math.copySign(Double.POSITIVE_INFINITY, c) * a; 1135 y = Math.copySign(Double.POSITIVE_INFINITY, c) * b; 1136 } else if ((Double.isInfinite(a) || Double.isInfinite(b)) && 1137 Double.isFinite(c) && Double.isFinite(d)) { 1138 // infinite/finite 1139 a = boxInfinity(a); 1140 b = boxInfinity(b); 1141 x = Double.POSITIVE_INFINITY * (a * c + b * d); 1142 y = Double.POSITIVE_INFINITY * (b * c - a * d); 1143 } else if ((Double.isInfinite(c) || Double.isInfinite(d)) && 1144 Double.isFinite(a) && Double.isFinite(b)) { 1145 // finite/infinite 1146 c = boxInfinity(c); 1147 d = boxInfinity(d); 1148 x = 0.0 * (a * c + b * d); 1149 y = 0.0 * (b * c - a * d); 1150 } 1151 } 1152 return new Complex(x, y); 1153 } 1154 1155 /** 1156 * Returns a {@code Complex} whose value is {@code (this / divisor)}, 1157 * with {@code divisor} interpreted as a real number. 1158 * Implements the formula: 1159 * 1160 * <p>\[ \frac{a + i b}{c} = \frac{a}{c} + i \frac{b}{c} \] 1161 * 1162 * <p>This method is included for compatibility with ISO C99 which defines arithmetic between 1163 * real-only and complex numbers.</p> 1164 * 1165 * <p>Note: This method should be preferred over using 1166 * {@link #divide(Complex) divide(Complex.ofCartesian(divisor, 0))}. Division 1167 * can generate signed zeros if {@code this} complex has zeros for the real 1168 * and/or imaginary component, or the divisor is infinite. The summation of signed zeros 1169 * in {@link #divide(Complex)} may create zeros in the result that differ in sign 1170 * from the equivalent call to divide by a real-only number. 1171 * 1172 * @param divisor Value by which this complex number is to be divided. 1173 * @return {@code this / divisor}. 1174 * @see #divide(Complex) 1175 */ 1176 public Complex divide(double divisor) { 1177 return new Complex(real / divisor, imaginary / divisor); 1178 } 1179 1180 /** 1181 * Returns a {@code Complex} whose value is {@code (this / divisor)}, 1182 * with {@code divisor} interpreted as an imaginary number. 1183 * Implements the formula: 1184 * 1185 * <p>\[ \frac{a + i b}{id} = \frac{b}{d} - i \frac{a}{d} \] 1186 * 1187 * <p>This method is included for compatibility with ISO C99 which defines arithmetic between 1188 * imaginary-only and complex numbers.</p> 1189 * 1190 * <p>Note: This method should be preferred over using 1191 * {@link #divide(Complex) divide(Complex.ofCartesian(0, divisor))}. Division 1192 * can generate signed zeros if {@code this} complex has zeros for the real 1193 * and/or imaginary component, or the divisor is infinite. The summation of signed zeros 1194 * in {@link #divide(Complex)} may create zeros in the result that differ in sign 1195 * from the equivalent call to divide by an imaginary-only number. 1196 * 1197 * <p>Warning: This method will generate a different result from 1198 * {@link #divide(Complex) divide(Complex.ofCartesian(0, divisor))} if the divisor is zero. 1199 * In this case the divide method using a zero-valued Complex will produce the same result 1200 * as dividing by a real-only zero. The output from dividing by imaginary zero will create 1201 * infinite and NaN values in the same component parts as the output from 1202 * {@code this.divide(Complex.ZERO).multiplyImaginary(1)}, however the sign 1203 * of some infinite values may be negated. 1204 * 1205 * @param divisor Value by which this complex number is to be divided. 1206 * @return {@code this / divisor}. 1207 * @see #divide(Complex) 1208 * @see #divide(double) 1209 */ 1210 public Complex divideImaginary(double divisor) { 1211 return new Complex(imaginary / divisor, -real / divisor); 1212 } 1213 1214 /** 1215 * Returns the 1216 * <a href="http://mathworld.wolfram.com/ExponentialFunction.html"> 1217 * exponential function</a> of this complex number. 1218 * 1219 * <p>\[ \exp(z) = e^z \] 1220 * 1221 * <p>The exponential function of \( z \) is an entire function in the complex plane. 1222 * Special cases: 1223 * 1224 * <ul> 1225 * <li>{@code z.conj().exp() == z.exp().conj()}. 1226 * <li>If {@code z} is ±0 + i0, returns 1 + i0. 1227 * <li>If {@code z} is x + i∞ for finite x, returns NaN + iNaN ("invalid" floating-point operation). 1228 * <li>If {@code z} is x + iNaN for finite x, returns NaN + iNaN ("invalid" floating-point operation). 1229 * <li>If {@code z} is +∞ + i0, returns +∞ + i0. 1230 * <li>If {@code z} is −∞ + iy for finite y, returns +0 cis(y) (see {@link #ofCis(double)}). 1231 * <li>If {@code z} is +∞ + iy for finite nonzero y, returns +∞ cis(y). 1232 * <li>If {@code z} is −∞ + i∞, returns ±0 ± i0 (where the signs of the real and imaginary parts of the result are unspecified). 1233 * <li>If {@code z} is +∞ + i∞, returns ±∞ + iNaN (where the sign of the real part of the result is unspecified; "invalid" floating-point operation). 1234 * <li>If {@code z} is −∞ + iNaN, returns ±0 ± i0 (where the signs of the real and imaginary parts of the result are unspecified). 1235 * <li>If {@code z} is +∞ + iNaN, returns ±∞ + iNaN (where the sign of the real part of the result is unspecified). 1236 * <li>If {@code z} is NaN + i0, returns NaN + i0. 1237 * <li>If {@code z} is NaN + iy for all nonzero numbers y, returns NaN + iNaN ("invalid" floating-point operation). 1238 * <li>If {@code z} is NaN + iNaN, returns NaN + iNaN. 1239 * </ul> 1240 * 1241 * <p>Implements the formula: 1242 * 1243 * <p>\[ \exp(x + iy) = e^x (\cos(y) + i \sin(y)) \] 1244 * 1245 * @return The exponential of this complex number. 1246 * @see <a href="http://functions.wolfram.com/ElementaryFunctions/Exp/">Exp</a> 1247 */ 1248 public Complex exp() { 1249 if (Double.isInfinite(real)) { 1250 // Set the scale factor applied to cis(y) 1251 final double zeroOrInf; 1252 if (real < 0) { 1253 if (!Double.isFinite(imaginary)) { 1254 // (−∞ + i∞) or (−∞ + iNaN) returns (±0 ± i0) (where the signs of the 1255 // real and imaginary parts of the result are unspecified). 1256 // Here we preserve the conjugate equality. 1257 return new Complex(0, Math.copySign(0, imaginary)); 1258 } 1259 // (−∞ + iy) returns +0 cis(y), for finite y 1260 zeroOrInf = 0; 1261 } else { 1262 // (+∞ + i0) returns +∞ + i0. 1263 if (imaginary == 0) { 1264 return this; 1265 } 1266 // (+∞ + i∞) or (+∞ + iNaN) returns (±∞ + iNaN) and raises the invalid 1267 // floating-point exception (where the sign of the real part of the 1268 // result is unspecified). 1269 if (!Double.isFinite(imaginary)) { 1270 return new Complex(real, Double.NaN); 1271 } 1272 // (+∞ + iy) returns (+∞ cis(y)), for finite nonzero y. 1273 zeroOrInf = real; 1274 } 1275 return new Complex(zeroOrInf * Math.cos(imaginary), 1276 zeroOrInf * Math.sin(imaginary)); 1277 } else if (Double.isNaN(real)) { 1278 // (NaN + i0) returns (NaN + i0) 1279 // (NaN + iy) returns (NaN + iNaN) and optionally raises the invalid floating-point exception 1280 // (NaN + iNaN) returns (NaN + iNaN) 1281 return imaginary == 0 ? this : NAN; 1282 } else if (!Double.isFinite(imaginary)) { 1283 // (x + i∞) or (x + iNaN) returns (NaN + iNaN) and raises the invalid 1284 // floating-point exception, for finite x. 1285 return NAN; 1286 } 1287 // real and imaginary are finite. 1288 // Compute e^a * (cos(b) + i sin(b)). 1289 1290 // Special case: 1291 // (±0 + i0) returns (1 + i0) 1292 final double exp = Math.exp(real); 1293 if (imaginary == 0) { 1294 return new Complex(exp, imaginary); 1295 } 1296 return new Complex(exp * Math.cos(imaginary), 1297 exp * Math.sin(imaginary)); 1298 } 1299 1300 /** 1301 * Returns the 1302 * <a href="http://mathworld.wolfram.com/NaturalLogarithm.html"> 1303 * natural logarithm</a> of this complex number. 1304 * 1305 * <p>The natural logarithm of \( z \) is unbounded along the real axis and 1306 * in the range \( [-\pi, \pi] \) along the imaginary axis. The imaginary part of the 1307 * natural logarithm has a branch cut along the negative real axis \( (-infty,0] \). 1308 * Special cases: 1309 * 1310 * <ul> 1311 * <li>{@code z.conj().log() == z.log().conj()}. 1312 * <li>If {@code z} is −0 + i0, returns −∞ + iπ ("divide-by-zero" floating-point operation). 1313 * <li>If {@code z} is +0 + i0, returns −∞ + i0 ("divide-by-zero" floating-point operation). 1314 * <li>If {@code z} is x + i∞ for finite x, returns +∞ + iπ/2. 1315 * <li>If {@code z} is x + iNaN for finite x, returns NaN + iNaN ("invalid" floating-point operation). 1316 * <li>If {@code z} is −∞ + iy for finite positive-signed y, returns +∞ + iπ. 1317 * <li>If {@code z} is +∞ + iy for finite positive-signed y, returns +∞ + i0. 1318 * <li>If {@code z} is −∞ + i∞, returns +∞ + i3π/4. 1319 * <li>If {@code z} is +∞ + i∞, returns +∞ + iπ/4. 1320 * <li>If {@code z} is ±∞ + iNaN, returns +∞ + iNaN. 1321 * <li>If {@code z} is NaN + iy for finite y, returns NaN + iNaN ("invalid" floating-point operation). 1322 * <li>If {@code z} is NaN + i∞, returns +∞ + iNaN. 1323 * <li>If {@code z} is NaN + iNaN, returns NaN + iNaN. 1324 * </ul> 1325 * 1326 * <p>Implements the formula: 1327 * 1328 * <p>\[ \ln(z) = \ln |z| + i \arg(z) \] 1329 * 1330 * <p>where \( |z| \) is the absolute and \( \arg(z) \) is the argument. 1331 * 1332 * <p>The implementation is based on the method described in:</p> 1333 * <blockquote> 1334 * T E Hull, Thomas F Fairgrieve and Ping Tak Peter Tang (1994) 1335 * Implementing complex elementary functions using exception handling. 1336 * ACM Transactions on Mathematical Software, Vol 20, No 2, pp 215-244. 1337 * </blockquote> 1338 * 1339 * @return The natural logarithm of this complex number. 1340 * @see Math#log(double) 1341 * @see #abs() 1342 * @see #arg() 1343 * @see <a href="http://functions.wolfram.com/ElementaryFunctions/Log/">Log</a> 1344 */ 1345 public Complex log() { 1346 return log(Math::log, HALF, LN_2, Complex::ofCartesian); 1347 } 1348 1349 /** 1350 * Returns the base 10 1351 * <a href="http://mathworld.wolfram.com/CommonLogarithm.html"> 1352 * common logarithm</a> of this complex number. 1353 * 1354 * <p>The common logarithm of \( z \) is unbounded along the real axis and 1355 * in the range \( [-\pi, \pi] \) along the imaginary axis. The imaginary part of the 1356 * common logarithm has a branch cut along the negative real axis \( (-infty,0] \). 1357 * Special cases are as defined in the {@link #log() natural logarithm}: 1358 * 1359 * <p>Implements the formula: 1360 * 1361 * <p>\[ \log_{10}(z) = \log_{10} |z| + i \arg(z) \] 1362 * 1363 * <p>where \( |z| \) is the absolute and \( \arg(z) \) is the argument. 1364 * 1365 * @return The base 10 logarithm of this complex number. 1366 * @see Math#log10(double) 1367 * @see #abs() 1368 * @see #arg() 1369 */ 1370 public Complex log10() { 1371 return log(Math::log10, LOG_10E_O_2, LOG10_2, Complex::ofCartesian); 1372 } 1373 1374 /** 1375 * Returns the logarithm of this complex number using the provided function. 1376 * Implements the formula: 1377 * 1378 * <pre> 1379 * log(x + i y) = log(|x + i y|) + i arg(x + i y)</pre> 1380 * 1381 * <p>Warning: The argument {@code logOf2} must be equal to {@code log(2)} using the 1382 * provided log function otherwise scaling using powers of 2 in the case of overflow 1383 * will be incorrect. This is provided as an internal optimisation. 1384 * 1385 * @param log Log function. 1386 * @param logOfeOver2 The log function applied to e, then divided by 2. 1387 * @param logOf2 The log function applied to 2. 1388 * @param constructor Constructor for the returned complex. 1389 * @return The logarithm of this complex number. 1390 * @see #abs() 1391 * @see #arg() 1392 */ 1393 private Complex log(DoubleUnaryOperator log, double logOfeOver2, double logOf2, ComplexConstructor constructor) { 1394 // Handle NaN 1395 if (Double.isNaN(real) || Double.isNaN(imaginary)) { 1396 // Return NaN unless infinite 1397 if (isInfinite()) { 1398 return constructor.create(Double.POSITIVE_INFINITY, Double.NaN); 1399 } 1400 // No-use of the input constructor 1401 return NAN; 1402 } 1403 1404 // Returns the real part: 1405 // log(sqrt(x^2 + y^2)) 1406 // log(x^2 + y^2) / 2 1407 1408 // Compute with positive values 1409 double x = Math.abs(real); 1410 double y = Math.abs(imaginary); 1411 1412 // Find the larger magnitude. 1413 if (x < y) { 1414 final double tmp = x; 1415 x = y; 1416 y = tmp; 1417 } 1418 1419 if (x == 0) { 1420 // Handle zero: raises the ‘‘divide-by-zero’’ floating-point exception. 1421 return constructor.create(Double.NEGATIVE_INFINITY, 1422 negative(real) ? Math.copySign(Math.PI, imaginary) : imaginary); 1423 } 1424 1425 double re; 1426 1427 // This alters the implementation of Hull et al (1994) which used a standard 1428 // precision representation of |z|: sqrt(x*x + y*y). 1429 // This formula should use the same definition of the magnitude returned 1430 // by Complex.abs() which is a high precision computation with scaling. 1431 // The checks for overflow thus only require ensuring the output of |z| 1432 // will not overflow or underflow. 1433 1434 if (x > HALF && x < ROOT2) { 1435 // x^2+y^2 close to 1. Use log1p(x^2+y^2 - 1) / 2. 1436 re = Math.log1p(x2y2m1(x, y)) * logOfeOver2; 1437 } else { 1438 // Check for over/underflow in |z| 1439 // When scaling: 1440 // log(a / b) = log(a) - log(b) 1441 // So initialize the result with the log of the scale factor. 1442 re = 0; 1443 if (x > Double.MAX_VALUE / 2) { 1444 // Potential overflow. 1445 if (isPosInfinite(x)) { 1446 // Handle infinity 1447 return constructor.create(x, arg()); 1448 } 1449 // Scale down. 1450 x /= 2; 1451 y /= 2; 1452 // log(2) 1453 re = logOf2; 1454 } else if (y < Double.MIN_NORMAL) { 1455 // Potential underflow. 1456 if (y == 0) { 1457 // Handle real only number 1458 return constructor.create(log.applyAsDouble(x), arg()); 1459 } 1460 // Scale up sub-normal numbers to make them normal by scaling by 2^54, 1461 // i.e. more than the mantissa digits. 1462 x *= 0x1.0p54; 1463 y *= 0x1.0p54; 1464 // log(2^-54) = -54 * log(2) 1465 re = -54 * logOf2; 1466 } 1467 re += log.applyAsDouble(abs(x, y)); 1468 } 1469 1470 // All ISO C99 edge cases for the imaginary are satisfied by the Math library. 1471 return constructor.create(re, arg()); 1472 } 1473 1474 /** 1475 * Returns the complex power of this complex number raised to the power of {@code x}. 1476 * Implements the formula: 1477 * 1478 * <p>\[ z^x = e^{x \ln(z)} \] 1479 * 1480 * <p>If this complex number is zero then this method returns zero if {@code x} is positive 1481 * in the real component and zero in the imaginary component; 1482 * otherwise it returns NaN + iNaN. 1483 * 1484 * @param x The exponent to which this complex number is to be raised. 1485 * @return This complex number raised to the power of {@code x}. 1486 * @see #log() 1487 * @see #multiply(Complex) 1488 * @see #exp() 1489 * @see <a href="http://mathworld.wolfram.com/ComplexExponentiation.html">Complex exponentiation</a> 1490 * @see <a href="http://functions.wolfram.com/ElementaryFunctions/Power/">Power</a> 1491 */ 1492 public Complex pow(Complex x) { 1493 if (real == 0 && 1494 imaginary == 0) { 1495 // This value is zero. Test the other. 1496 if (x.real > 0 && 1497 x.imaginary == 0) { 1498 // 0 raised to positive number is 0 1499 return ZERO; 1500 } 1501 // 0 raised to anything else is NaN 1502 return NAN; 1503 } 1504 return log().multiply(x).exp(); 1505 } 1506 1507 /** 1508 * Returns the complex power of this complex number raised to the power of {@code x}, 1509 * with {@code x} interpreted as a real number. 1510 * Implements the formula: 1511 * 1512 * <p>\[ z^x = e^{x \ln(z)} \] 1513 * 1514 * <p>If this complex number is zero then this method returns zero if {@code x} is positive; 1515 * otherwise it returns NaN + iNaN. 1516 * 1517 * @param x The exponent to which this complex number is to be raised. 1518 * @return This complex number raised to the power of {@code x}. 1519 * @see #log() 1520 * @see #multiply(double) 1521 * @see #exp() 1522 * @see #pow(Complex) 1523 * @see <a href="http://functions.wolfram.com/ElementaryFunctions/Power/">Power</a> 1524 */ 1525 public Complex pow(double x) { 1526 if (real == 0 && 1527 imaginary == 0) { 1528 // This value is zero. Test the other. 1529 if (x > 0) { 1530 // 0 raised to positive number is 0 1531 return ZERO; 1532 } 1533 // 0 raised to anything else is NaN 1534 return NAN; 1535 } 1536 return log().multiply(x).exp(); 1537 } 1538 1539 /** 1540 * Returns the 1541 * <a href="http://mathworld.wolfram.com/SquareRoot.html"> 1542 * square root</a> of this complex number. 1543 * 1544 * <p>\[ \sqrt{x + iy} = \frac{1}{2} \sqrt{2} \left( \sqrt{ \sqrt{x^2 + y^2} + x } + i\ \text{sgn}(y) \sqrt{ \sqrt{x^2 + y^2} - x } \right) \] 1545 * 1546 * <p>The square root of \( z \) is in the range \( [0, +\infty) \) along the real axis and 1547 * is unbounded along the imaginary axis. The imaginary part of the square root has a 1548 * branch cut along the negative real axis \( (-infty,0) \). Special cases: 1549 * 1550 * <ul> 1551 * <li>{@code z.conj().sqrt() == z.sqrt().conj()}. 1552 * <li>If {@code z} is ±0 + i0, returns +0 + i0. 1553 * <li>If {@code z} is x + i∞ for all x (including NaN), returns +∞ + i∞. 1554 * <li>If {@code z} is x + iNaN for finite x, returns NaN + iNaN ("invalid" floating-point operation). 1555 * <li>If {@code z} is −∞ + iy for finite positive-signed y, returns +0 + i∞. 1556 * <li>If {@code z} is +∞ + iy for finite positive-signed y, returns +∞ + i0. 1557 * <li>If {@code z} is −∞ + iNaN, returns NaN ± i∞ (where the sign of the imaginary part of the result is unspecified). 1558 * <li>If {@code z} is +∞ + iNaN, returns +∞ + iNaN. 1559 * <li>If {@code z} is NaN + iy for finite y, returns NaN + iNaN ("invalid" floating-point operation). 1560 * <li>If {@code z} is NaN + iNaN, returns NaN + iNaN. 1561 * </ul> 1562 * 1563 * <p>Implements the following algorithm to compute \( \sqrt{x + iy} \): 1564 * <ol> 1565 * <li>Let \( t = \sqrt{2 (|x| + |x + iy|)} \) 1566 * <li>if \( x \geq 0 \) return \( \frac{t}{2} + i \frac{y}{t} \) 1567 * <li>else return \( \frac{|y|}{t} + i\ \text{sgn}(y) \frac{t}{2} \) 1568 * </ol> 1569 * where: 1570 * <ul> 1571 * <li>\( |x| =\ \){@link Math#abs(double) abs}(x) 1572 * <li>\( |x + y i| =\ \){@link Complex#abs} 1573 * <li>\( \text{sgn}(y) =\ \){@link Math#copySign(double,double) copySign}(1.0, y) 1574 * </ul> 1575 * 1576 * <p>The implementation is overflow and underflow safe based on the method described in:</p> 1577 * <blockquote> 1578 * T E Hull, Thomas F Fairgrieve and Ping Tak Peter Tang (1994) 1579 * Implementing complex elementary functions using exception handling. 1580 * ACM Transactions on Mathematical Software, Vol 20, No 2, pp 215-244. 1581 * </blockquote> 1582 * 1583 * @return The square root of this complex number. 1584 * @see <a href="http://functions.wolfram.com/ElementaryFunctions/Sqrt/">Sqrt</a> 1585 */ 1586 public Complex sqrt() { 1587 return sqrt(real, imaginary); 1588 } 1589 1590 /** 1591 * Returns the square root of the complex number {@code sqrt(x + i y)}. 1592 * 1593 * @param real Real component. 1594 * @param imaginary Imaginary component. 1595 * @return The square root of the complex number. 1596 */ 1597 private static Complex sqrt(double real, double imaginary) { 1598 // Handle NaN 1599 if (Double.isNaN(real) || Double.isNaN(imaginary)) { 1600 // Check for infinite 1601 if (Double.isInfinite(imaginary)) { 1602 return new Complex(Double.POSITIVE_INFINITY, imaginary); 1603 } 1604 if (Double.isInfinite(real)) { 1605 if (real == Double.NEGATIVE_INFINITY) { 1606 return new Complex(Double.NaN, Math.copySign(Double.POSITIVE_INFINITY, imaginary)); 1607 } 1608 return new Complex(Double.POSITIVE_INFINITY, Double.NaN); 1609 } 1610 return NAN; 1611 } 1612 1613 // Compute with positive values and determine sign at the end 1614 final double x = Math.abs(real); 1615 final double y = Math.abs(imaginary); 1616 1617 // Compute 1618 final double t; 1619 1620 // This alters the implementation of Hull et al (1994) which used a standard 1621 // precision representation of |z|: sqrt(x*x + y*y). 1622 // This formula should use the same definition of the magnitude returned 1623 // by Complex.abs() which is a high precision computation with scaling. 1624 // Worry about overflow if 2 * (|z| + |x|) will overflow. 1625 // Worry about underflow if |z| or |x| are sub-normal components. 1626 1627 if (inRegion(x, y, Double.MIN_NORMAL, SQRT_SAFE_UPPER)) { 1628 // No over/underflow 1629 t = Math.sqrt(2 * (abs(x, y) + x)); 1630 } else { 1631 // Potential over/underflow. First check infinites and real/imaginary only. 1632 1633 // Check for infinite 1634 if (isPosInfinite(y)) { 1635 return new Complex(Double.POSITIVE_INFINITY, imaginary); 1636 } else if (isPosInfinite(x)) { 1637 if (real == Double.NEGATIVE_INFINITY) { 1638 return new Complex(0, Math.copySign(Double.POSITIVE_INFINITY, imaginary)); 1639 } 1640 return new Complex(Double.POSITIVE_INFINITY, Math.copySign(0, imaginary)); 1641 } else if (y == 0) { 1642 // Real only 1643 final double sqrtAbs = Math.sqrt(x); 1644 if (real < 0) { 1645 return new Complex(0, Math.copySign(sqrtAbs, imaginary)); 1646 } 1647 return new Complex(sqrtAbs, imaginary); 1648 } else if (x == 0) { 1649 // Imaginary only. This sets the two components to the same magnitude. 1650 // Note: In polar coordinates this does not happen: 1651 // real = sqrt(abs()) * Math.cos(arg() / 2) 1652 // imag = sqrt(abs()) * Math.sin(arg() / 2) 1653 // arg() / 2 = pi/4 and cos and sin should both return sqrt(2)/2 but 1654 // are different by 1 ULP. 1655 final double sqrtAbs = Math.sqrt(y) * ONE_OVER_ROOT2; 1656 return new Complex(sqrtAbs, Math.copySign(sqrtAbs, imaginary)); 1657 } else { 1658 // Over/underflow. 1659 // Full scaling is not required as this is done in the hypotenuse function. 1660 // Keep the number as big as possible for maximum precision in the second sqrt. 1661 // Note if we scale by an even power of 2, we can re-scale by sqrt of the number. 1662 // a = sqrt(b) 1663 // a = sqrt(b/4) * sqrt(4) 1664 1665 final double rescale; 1666 final double sx; 1667 final double sy; 1668 if (Math.max(x, y) > SQRT_SAFE_UPPER) { 1669 // Overflow. Scale down by 16 and rescale by sqrt(16). 1670 sx = x / 16; 1671 sy = y / 16; 1672 rescale = 4; 1673 } else { 1674 // Sub-normal numbers. Make them normal by scaling by 2^54, 1675 // i.e. more than the mantissa digits, and rescale by sqrt(2^54) = 2^27. 1676 sx = x * 0x1.0p54; 1677 sy = y * 0x1.0p54; 1678 rescale = 0x1.0p-27; 1679 } 1680 t = rescale * Math.sqrt(2 * (abs(sx, sy) + sx)); 1681 } 1682 } 1683 1684 if (real >= 0) { 1685 return new Complex(t / 2, imaginary / t); 1686 } 1687 return new Complex(y / t, Math.copySign(t / 2, imaginary)); 1688 } 1689 1690 /** 1691 * Returns the 1692 * <a href="http://mathworld.wolfram.com/Sine.html"> 1693 * sine</a> of this complex number. 1694 * 1695 * <p>\[ \sin(z) = \frac{1}{2} i \left( e^{-iz} - e^{iz} \right) \] 1696 * 1697 * <p>This is an odd function: \( \sin(z) = -\sin(-z) \). 1698 * The sine is an entire function and requires no branch cuts. 1699 * 1700 * <p>This is implemented using real \( x \) and imaginary \( y \) parts: 1701 * 1702 * <p>\[ \sin(x + iy) = \sin(x)\cosh(y) + i \cos(x)\sinh(y) \] 1703 * 1704 * <p>As per the C99 standard this function is computed using the trigonomic identity: 1705 * 1706 * <p>\[ \sin(z) = -i \sinh(iz) \] 1707 * 1708 * @return The sine of this complex number. 1709 * @see <a href="http://functions.wolfram.com/ElementaryFunctions/Sin/">Sin</a> 1710 */ 1711 public Complex sin() { 1712 // Define in terms of sinh 1713 // sin(z) = -i sinh(iz) 1714 // Multiply this number by I, compute sinh, then multiply by back 1715 return sinh(-imaginary, real, Complex::multiplyNegativeI); 1716 } 1717 1718 /** 1719 * Returns the 1720 * <a href="http://mathworld.wolfram.com/Cosine.html"> 1721 * cosine</a> of this complex number. 1722 * 1723 * <p>\[ \cos(z) = \frac{1}{2} \left( e^{iz} + e^{-iz} \right) \] 1724 * 1725 * <p>This is an even function: \( \cos(z) = \cos(-z) \). 1726 * The cosine is an entire function and requires no branch cuts. 1727 * 1728 * <p>This is implemented using real \( x \) and imaginary \( y \) parts: 1729 * 1730 * <p>\[ \cos(x + iy) = \cos(x)\cosh(y) - i \sin(x)\sinh(y) \] 1731 * 1732 * <p>As per the C99 standard this function is computed using the trigonomic identity: 1733 * 1734 * <p>\[ cos(z) = cosh(iz) \] 1735 * 1736 * @return The cosine of this complex number. 1737 * @see <a href="http://functions.wolfram.com/ElementaryFunctions/Cos/">Cos</a> 1738 */ 1739 public Complex cos() { 1740 // Define in terms of cosh 1741 // cos(z) = cosh(iz) 1742 // Multiply this number by I and compute cosh. 1743 return cosh(-imaginary, real, Complex::ofCartesian); 1744 } 1745 1746 /** 1747 * Returns the 1748 * <a href="http://mathworld.wolfram.com/Tangent.html"> 1749 * tangent</a> of this complex number. 1750 * 1751 * <p>\[ \tan(z) = \frac{i(e^{-iz} - e^{iz})}{e^{-iz} + e^{iz}} \] 1752 * 1753 * <p>This is an odd function: \( \tan(z) = -\tan(-z) \). 1754 * The tangent is an entire function and requires no branch cuts. 1755 * 1756 * <p>This is implemented using real \( x \) and imaginary \( y \) parts:</p> 1757 * \[ \tan(x + iy) = \frac{\sin(2x)}{\cos(2x)+\cosh(2y)} + i \frac{\sinh(2y)}{\cos(2x)+\cosh(2y)} \] 1758 * 1759 * <p>As per the C99 standard this function is computed using the trigonomic identity:</p> 1760 * \[ \tan(z) = -i \tanh(iz) \] 1761 * 1762 * @return The tangent of this complex number. 1763 * @see <a href="http://functions.wolfram.com/ElementaryFunctions/Tan/">Tangent</a> 1764 */ 1765 public Complex tan() { 1766 // Define in terms of tanh 1767 // tan(z) = -i tanh(iz) 1768 // Multiply this number by I, compute tanh, then multiply by back 1769 return tanh(-imaginary, real, Complex::multiplyNegativeI); 1770 } 1771 1772 /** 1773 * Returns the 1774 * <a href="http://mathworld.wolfram.com/InverseSine.html"> 1775 * inverse sine</a> of this complex number. 1776 * 1777 * <p>\[ \sin^{-1}(z) = - i \left(\ln{iz + \sqrt{1 - z^2}}\right) \] 1778 * 1779 * <p>The inverse sine of \( z \) is unbounded along the imaginary axis and 1780 * in the range \( [-\pi, \pi] \) along the real axis. Special cases are handled 1781 * as if the operation is implemented using \( \sin^{-1}(z) = -i \sinh^{-1}(iz) \). 1782 * 1783 * <p>The inverse sine is a multivalued function and requires a branch cut in 1784 * the complex plane; the cut is conventionally placed at the line segments 1785 * \( (\infty,-1) \) and \( (1,\infty) \) of the real axis. 1786 * 1787 * <p>This is implemented using real \( x \) and imaginary \( y \) parts: 1788 * 1789 * <p>\[ \begin{aligned} 1790 * \sin^{-1}(z) &= \sin^{-1}(B) + i\ \text{sgn}(y)\ln \left(A + \sqrt{A^2-1} \right) \\ 1791 * A &= \frac{1}{2} \left[ \sqrt{(x+1)^2+y^2} + \sqrt{(x-1)^2+y^2} \right] \\ 1792 * B &= \frac{1}{2} \left[ \sqrt{(x+1)^2+y^2} - \sqrt{(x-1)^2+y^2} \right] \end{aligned} \] 1793 * 1794 * <p>where \( \text{sgn}(y) \) is the sign function implemented using 1795 * {@link Math#copySign(double,double) copySign(1.0, y)}. 1796 * 1797 * <p>The implementation is based on the method described in:</p> 1798 * <blockquote> 1799 * T E Hull, Thomas F Fairgrieve and Ping Tak Peter Tang (1997) 1800 * Implementing the complex Arcsine and Arccosine Functions using Exception Handling. 1801 * ACM Transactions on Mathematical Software, Vol 23, No 3, pp 299-335. 1802 * </blockquote> 1803 * 1804 * <p>The code has been adapted from the <a href="https://www.boost.org/">Boost</a> 1805 * {@code c++} implementation {@code <boost/math/complex/asin.hpp>}. 1806 * 1807 * @return The inverse sine of this complex number. 1808 * @see <a href="http://functions.wolfram.com/ElementaryFunctions/ArcSin/">ArcSin</a> 1809 */ 1810 public Complex asin() { 1811 return asin(real, imaginary, Complex::ofCartesian); 1812 } 1813 1814 /** 1815 * Returns the inverse sine of the complex number. 1816 * 1817 * <p>This function exists to allow implementation of the identity 1818 * {@code asinh(z) = -i asin(iz)}. 1819 * 1820 * <p>Adapted from {@code <boost/math/complex/asin.hpp>}. This method only (and not 1821 * invoked methods within) is distributed under the Boost Software License V1.0. 1822 * The original notice is shown below and the licence is shown in full in LICENSE: 1823 * <pre> 1824 * (C) Copyright John Maddock 2005. 1825 * Distributed under the Boost Software License, Version 1.0. (See accompanying 1826 * file LICENSE or copy at https://www.boost.org/LICENSE_1_0.txt) 1827 * </pre> 1828 * 1829 * @param real Real part. 1830 * @param imaginary Imaginary part. 1831 * @param constructor Constructor. 1832 * @return The inverse sine of this complex number. 1833 */ 1834 private static Complex asin(final double real, final double imaginary, 1835 final ComplexConstructor constructor) { 1836 // Compute with positive values and determine sign at the end 1837 final double x = Math.abs(real); 1838 final double y = Math.abs(imaginary); 1839 // The result (without sign correction) 1840 final double re; 1841 final double im; 1842 1843 // Handle C99 special cases 1844 if (Double.isNaN(x)) { 1845 if (isPosInfinite(y)) { 1846 re = x; 1847 im = y; 1848 } else { 1849 // No-use of the input constructor 1850 return NAN; 1851 } 1852 } else if (Double.isNaN(y)) { 1853 if (x == 0) { 1854 re = 0; 1855 im = y; 1856 } else if (isPosInfinite(x)) { 1857 re = y; 1858 im = x; 1859 } else { 1860 // No-use of the input constructor 1861 return NAN; 1862 } 1863 } else if (isPosInfinite(x)) { 1864 re = isPosInfinite(y) ? PI_OVER_4 : PI_OVER_2; 1865 im = x; 1866 } else if (isPosInfinite(y)) { 1867 re = 0; 1868 im = y; 1869 } else { 1870 // Special case for real numbers: 1871 if (y == 0 && x <= 1) { 1872 return constructor.create(Math.asin(real), imaginary); 1873 } 1874 1875 final double xp1 = x + 1; 1876 final double xm1 = x - 1; 1877 1878 if (inRegion(x, y, SAFE_MIN, SAFE_MAX)) { 1879 final double yy = y * y; 1880 final double r = Math.sqrt(xp1 * xp1 + yy); 1881 final double s = Math.sqrt(xm1 * xm1 + yy); 1882 final double a = 0.5 * (r + s); 1883 final double b = x / a; 1884 1885 if (b <= B_CROSSOVER) { 1886 re = Math.asin(b); 1887 } else { 1888 final double apx = a + x; 1889 if (x <= 1) { 1890 re = Math.atan(x / Math.sqrt(0.5 * apx * (yy / (r + xp1) + (s - xm1)))); 1891 } else { 1892 re = Math.atan(x / (y * Math.sqrt(0.5 * (apx / (r + xp1) + apx / (s + xm1))))); 1893 } 1894 } 1895 1896 if (a <= A_CROSSOVER) { 1897 final double am1; 1898 if (x < 1) { 1899 am1 = 0.5 * (yy / (r + xp1) + yy / (s - xm1)); 1900 } else { 1901 am1 = 0.5 * (yy / (r + xp1) + (s + xm1)); 1902 } 1903 im = Math.log1p(am1 + Math.sqrt(am1 * (a + 1))); 1904 } else { 1905 im = Math.log(a + Math.sqrt(a * a - 1)); 1906 } 1907 } else { 1908 // Hull et al: Exception handling code from figure 4 1909 if (y <= (EPSILON * Math.abs(xm1))) { 1910 if (x < 1) { 1911 re = Math.asin(x); 1912 im = y / Math.sqrt(xp1 * (1 - x)); 1913 } else { 1914 re = PI_OVER_2; 1915 if ((Double.MAX_VALUE / xp1) > xm1) { 1916 // xp1 * xm1 won't overflow: 1917 im = Math.log1p(xm1 + Math.sqrt(xp1 * xm1)); 1918 } else { 1919 im = LN_2 + Math.log(x); 1920 } 1921 } 1922 } else if (y <= SAFE_MIN) { 1923 // Hull et al: Assume x == 1. 1924 // True if: 1925 // E^2 > 8*sqrt(u) 1926 // 1927 // E = Machine epsilon: (1 + epsilon) = 1 1928 // u = Double.MIN_NORMAL 1929 re = PI_OVER_2 - Math.sqrt(y); 1930 im = Math.sqrt(y); 1931 } else if (EPSILON * y - 1 >= x) { 1932 // Possible underflow: 1933 re = x / y; 1934 im = LN_2 + Math.log(y); 1935 } else if (x > 1) { 1936 re = Math.atan(x / y); 1937 final double xoy = x / y; 1938 im = LN_2 + Math.log(y) + 0.5 * Math.log1p(xoy * xoy); 1939 } else { 1940 final double a = Math.sqrt(1 + y * y); 1941 // Possible underflow: 1942 re = x / a; 1943 im = 0.5 * Math.log1p(2 * y * (y + a)); 1944 } 1945 } 1946 } 1947 1948 return constructor.create(changeSign(re, real), 1949 changeSign(im, imaginary)); 1950 } 1951 1952 /** 1953 * Returns the 1954 * <a href="http://mathworld.wolfram.com/InverseCosine.html"> 1955 * inverse cosine</a> of this complex number. 1956 * 1957 * <p>\[ \cos^{-1}(z) = \frac{\pi}{2} + i \left(\ln{iz + \sqrt{1 - z^2}}\right) \] 1958 * 1959 * <p>The inverse cosine of \( z \) is in the range \( [0, \pi) \) along the real axis and 1960 * unbounded along the imaginary axis. Special cases: 1961 * 1962 * <ul> 1963 * <li>{@code z.conj().acos() == z.acos().conj()}. 1964 * <li>If {@code z} is ±0 + i0, returns π/2 − i0. 1965 * <li>If {@code z} is ±0 + iNaN, returns π/2 + iNaN. 1966 * <li>If {@code z} is x + i∞ for finite x, returns π/2 − i∞. 1967 * <li>If {@code z} is x + iNaN, returns NaN + iNaN ("invalid" floating-point operation). 1968 * <li>If {@code z} is −∞ + iy for positive-signed finite y, returns π − i∞. 1969 * <li>If {@code z} is +∞ + iy for positive-signed finite y, returns +0 − i∞. 1970 * <li>If {@code z} is −∞ + i∞, returns 3π/4 − i∞. 1971 * <li>If {@code z} is +∞ + i∞, returns π/4 − i∞. 1972 * <li>If {@code z} is ±∞ + iNaN, returns NaN ± i∞ where the sign of the imaginary part of the result is unspecified. 1973 * <li>If {@code z} is NaN + iy for finite y, returns NaN + iNaN ("invalid" floating-point operation). 1974 * <li>If {@code z} is NaN + i∞, returns NaN − i∞. 1975 * <li>If {@code z} is NaN + iNaN, returns NaN + iNaN. 1976 * </ul> 1977 * 1978 * <p>The inverse cosine is a multivalued function and requires a branch cut in 1979 * the complex plane; the cut is conventionally placed at the line segments 1980 * \( (-\infty,-1) \) and \( (1,\infty) \) of the real axis. 1981 * 1982 * <p>This function is implemented using real \( x \) and imaginary \( y \) parts: 1983 * 1984 * <p>\[ \begin{aligned} 1985 * \cos^{-1}(z) &= \cos^{-1}(B) - i\ \text{sgn}(y) \ln\left(A + \sqrt{A^2-1}\right) \\ 1986 * A &= \frac{1}{2} \left[ \sqrt{(x+1)^2+y^2} + \sqrt{(x-1)^2+y^2} \right] \\ 1987 * B &= \frac{1}{2} \left[ \sqrt{(x+1)^2+y^2} - \sqrt{(x-1)^2+y^2} \right] \end{aligned} \] 1988 * 1989 * <p>where \( \text{sgn}(y) \) is the sign function implemented using 1990 * {@link Math#copySign(double,double) copySign(1.0, y)}. 1991 * 1992 * <p>The implementation is based on the method described in:</p> 1993 * <blockquote> 1994 * T E Hull, Thomas F Fairgrieve and Ping Tak Peter Tang (1997) 1995 * Implementing the complex Arcsine and Arccosine Functions using Exception Handling. 1996 * ACM Transactions on Mathematical Software, Vol 23, No 3, pp 299-335. 1997 * </blockquote> 1998 * 1999 * <p>The code has been adapted from the <a href="https://www.boost.org/">Boost</a> 2000 * {@code c++} implementation {@code <boost/math/complex/acos.hpp>}. 2001 * 2002 * @return The inverse cosine of this complex number. 2003 * @see <a href="http://functions.wolfram.com/ElementaryFunctions/ArcCos/">ArcCos</a> 2004 */ 2005 public Complex acos() { 2006 return acos(real, imaginary, Complex::ofCartesian); 2007 } 2008 2009 /** 2010 * Returns the inverse cosine of the complex number. 2011 * 2012 * <p>This function exists to allow implementation of the identity 2013 * {@code acosh(z) = +-i acos(z)}. 2014 * 2015 * <p>Adapted from {@code <boost/math/complex/acos.hpp>}. This method only (and not 2016 * invoked methods within) is distributed under the Boost Software License V1.0. 2017 * The original notice is shown below and the licence is shown in full in LICENSE: 2018 * <pre> 2019 * (C) Copyright John Maddock 2005. 2020 * Distributed under the Boost Software License, Version 1.0. (See accompanying 2021 * file LICENSE or copy at https://www.boost.org/LICENSE_1_0.txt) 2022 * </pre> 2023 * 2024 * @param real Real part. 2025 * @param imaginary Imaginary part. 2026 * @param constructor Constructor. 2027 * @return The inverse cosine of the complex number. 2028 */ 2029 private static Complex acos(final double real, final double imaginary, 2030 final ComplexConstructor constructor) { 2031 // Compute with positive values and determine sign at the end 2032 final double x = Math.abs(real); 2033 final double y = Math.abs(imaginary); 2034 // The result (without sign correction) 2035 final double re; 2036 final double im; 2037 2038 // Handle C99 special cases 2039 if (isPosInfinite(x)) { 2040 if (isPosInfinite(y)) { 2041 re = PI_OVER_4; 2042 im = y; 2043 } else if (Double.isNaN(y)) { 2044 // sign of the imaginary part of the result is unspecified 2045 return constructor.create(imaginary, real); 2046 } else { 2047 re = 0; 2048 im = Double.POSITIVE_INFINITY; 2049 } 2050 } else if (Double.isNaN(x)) { 2051 if (isPosInfinite(y)) { 2052 return constructor.create(x, -imaginary); 2053 } 2054 // No-use of the input constructor 2055 return NAN; 2056 } else if (isPosInfinite(y)) { 2057 re = PI_OVER_2; 2058 im = y; 2059 } else if (Double.isNaN(y)) { 2060 return constructor.create(x == 0 ? PI_OVER_2 : y, y); 2061 } else { 2062 // Special case for real numbers: 2063 if (y == 0 && x <= 1) { 2064 return constructor.create(x == 0 ? PI_OVER_2 : Math.acos(real), -imaginary); 2065 } 2066 2067 final double xp1 = x + 1; 2068 final double xm1 = x - 1; 2069 2070 if (inRegion(x, y, SAFE_MIN, SAFE_MAX)) { 2071 final double yy = y * y; 2072 final double r = Math.sqrt(xp1 * xp1 + yy); 2073 final double s = Math.sqrt(xm1 * xm1 + yy); 2074 final double a = 0.5 * (r + s); 2075 final double b = x / a; 2076 2077 if (b <= B_CROSSOVER) { 2078 re = Math.acos(b); 2079 } else { 2080 final double apx = a + x; 2081 if (x <= 1) { 2082 re = Math.atan(Math.sqrt(0.5 * apx * (yy / (r + xp1) + (s - xm1))) / x); 2083 } else { 2084 re = Math.atan((y * Math.sqrt(0.5 * (apx / (r + xp1) + apx / (s + xm1)))) / x); 2085 } 2086 } 2087 2088 if (a <= A_CROSSOVER) { 2089 final double am1; 2090 if (x < 1) { 2091 am1 = 0.5 * (yy / (r + xp1) + yy / (s - xm1)); 2092 } else { 2093 am1 = 0.5 * (yy / (r + xp1) + (s + xm1)); 2094 } 2095 im = Math.log1p(am1 + Math.sqrt(am1 * (a + 1))); 2096 } else { 2097 im = Math.log(a + Math.sqrt(a * a - 1)); 2098 } 2099 } else { 2100 // Hull et al: Exception handling code from figure 6 2101 if (y <= (EPSILON * Math.abs(xm1))) { 2102 if (x < 1) { 2103 re = Math.acos(x); 2104 im = y / Math.sqrt(xp1 * (1 - x)); 2105 } else { 2106 // This deviates from Hull et al's paper as per 2107 // https://svn.boost.org/trac/boost/ticket/7290 2108 if ((Double.MAX_VALUE / xp1) > xm1) { 2109 // xp1 * xm1 won't overflow: 2110 re = y / Math.sqrt(xm1 * xp1); 2111 im = Math.log1p(xm1 + Math.sqrt(xp1 * xm1)); 2112 } else { 2113 re = y / x; 2114 im = LN_2 + Math.log(x); 2115 } 2116 } 2117 } else if (y <= SAFE_MIN) { 2118 // Hull et al: Assume x == 1. 2119 // True if: 2120 // E^2 > 8*sqrt(u) 2121 // 2122 // E = Machine epsilon: (1 + epsilon) = 1 2123 // u = Double.MIN_NORMAL 2124 re = Math.sqrt(y); 2125 im = Math.sqrt(y); 2126 } else if (EPSILON * y - 1 >= x) { 2127 re = PI_OVER_2; 2128 im = LN_2 + Math.log(y); 2129 } else if (x > 1) { 2130 re = Math.atan(y / x); 2131 final double xoy = x / y; 2132 im = LN_2 + Math.log(y) + 0.5 * Math.log1p(xoy * xoy); 2133 } else { 2134 re = PI_OVER_2; 2135 final double a = Math.sqrt(1 + y * y); 2136 im = 0.5 * Math.log1p(2 * y * (y + a)); 2137 } 2138 } 2139 } 2140 2141 return constructor.create(negative(real) ? Math.PI - re : re, 2142 negative(imaginary) ? im : -im); 2143 } 2144 2145 /** 2146 * Returns the 2147 * <a href="http://mathworld.wolfram.com/InverseTangent.html"> 2148 * inverse tangent</a> of this complex number. 2149 * 2150 * <p>\[ \tan^{-1}(z) = \frac{i}{2} \ln \left( \frac{i + z}{i - z} \right) \] 2151 * 2152 * <p>The inverse hyperbolic tangent of \( z \) is unbounded along the imaginary axis and 2153 * in the range \( [-\pi/2, \pi/2] \) along the real axis. 2154 * 2155 * <p>The inverse tangent is a multivalued function and requires a branch cut in 2156 * the complex plane; the cut is conventionally placed at the line segments 2157 * \( (i \infty,-i] \) and \( [i,i \infty) \) of the imaginary axis. 2158 * 2159 * <p>As per the C99 standard this function is computed using the trigonomic identity: 2160 * \[ \tan^{-1}(z) = -i \tanh^{-1}(iz) \] 2161 * 2162 * @return The inverse tangent of this complex number. 2163 * @see <a href="http://functions.wolfram.com/ElementaryFunctions/ArcTan/">ArcTan</a> 2164 */ 2165 public Complex atan() { 2166 // Define in terms of atanh 2167 // atan(z) = -i atanh(iz) 2168 // Multiply this number by I, compute atanh, then multiply by back 2169 return atanh(-imaginary, real, Complex::multiplyNegativeI); 2170 } 2171 2172 /** 2173 * Returns the 2174 * <a href="http://mathworld.wolfram.com/HyperbolicSine.html"> 2175 * hyperbolic sine</a> of this complex number. 2176 * 2177 * <p>\[ \sinh(z) = \frac{1}{2} \left( e^{z} - e^{-z} \right) \] 2178 * 2179 * <p>The hyperbolic sine of \( z \) is an entire function in the complex plane 2180 * and is periodic with respect to the imaginary component with period \( 2\pi i \). 2181 * Special cases: 2182 * 2183 * <ul> 2184 * <li>{@code z.conj().sinh() == z.sinh().conj()}. 2185 * <li>This is an odd function: \( \sinh(z) = -\sinh(-z) \). 2186 * <li>If {@code z} is +0 + i0, returns +0 + i0. 2187 * <li>If {@code z} is +0 + i∞, returns ±0 + iNaN (where the sign of the real part of the result is unspecified; "invalid" floating-point operation). 2188 * <li>If {@code z} is +0 + iNaN, returns ±0 + iNaN (where the sign of the real part of the result is unspecified). 2189 * <li>If {@code z} is x + i∞ for positive finite x, returns NaN + iNaN ("invalid" floating-point operation). 2190 * <li>If {@code z} is x + iNaN for finite nonzero x, returns NaN + iNaN ("invalid" floating-point operation). 2191 * <li>If {@code z} is +∞ + i0, returns +∞ + i0. 2192 * <li>If {@code z} is +∞ + iy for positive finite y, returns +∞ cis(y) (see {@link #ofCis(double)}. 2193 * <li>If {@code z} is +∞ + i∞, returns ±∞ + iNaN (where the sign of the real part of the result is unspecified; "invalid" floating-point operation). 2194 * <li>If {@code z} is +∞ + iNaN, returns ±∞ + iNaN (where the sign of the real part of the result is unspecified). 2195 * <li>If {@code z} is NaN + i0, returns NaN + i0. 2196 * <li>If {@code z} is NaN + iy for all nonzero numbers y, returns NaN + iNaN ("invalid" floating-point operation). 2197 * <li>If {@code z} is NaN + iNaN, returns NaN + iNaN. 2198 * </ul> 2199 * 2200 * <p>This is implemented using real \( x \) and imaginary \( y \) parts: 2201 * 2202 * <p>\[ \sinh(x + iy) = \sinh(x)\cos(y) + i \cosh(x)\sin(y) \] 2203 * 2204 * @return The hyperbolic sine of this complex number. 2205 * @see <a href="http://functions.wolfram.com/ElementaryFunctions/Sinh/">Sinh</a> 2206 */ 2207 public Complex sinh() { 2208 return sinh(real, imaginary, Complex::ofCartesian); 2209 } 2210 2211 /** 2212 * Returns the hyperbolic sine of the complex number. 2213 * 2214 * <p>This function exists to allow implementation of the identity 2215 * {@code sin(z) = -i sinh(iz)}.<p> 2216 * 2217 * @param real Real part. 2218 * @param imaginary Imaginary part. 2219 * @param constructor Constructor. 2220 * @return The hyperbolic sine of the complex number. 2221 */ 2222 private static Complex sinh(double real, double imaginary, ComplexConstructor constructor) { 2223 if (Double.isInfinite(real) && !Double.isFinite(imaginary)) { 2224 return constructor.create(real, Double.NaN); 2225 } 2226 if (real == 0) { 2227 // Imaginary-only sinh(iy) = i sin(y). 2228 if (Double.isFinite(imaginary)) { 2229 // Maintain periodic property with respect to the imaginary component. 2230 // sinh(+/-0.0) * cos(+/-x) = +/-0 * cos(x) 2231 return constructor.create(changeSign(real, Math.cos(imaginary)), 2232 Math.sin(imaginary)); 2233 } 2234 // If imaginary is inf/NaN the sign of the real part is unspecified. 2235 // Returning the same real value maintains the conjugate equality. 2236 // It is not possible to also maintain the odd function (hence the unspecified sign). 2237 return constructor.create(real, Double.NaN); 2238 } 2239 if (imaginary == 0) { 2240 // Real-only sinh(x). 2241 return constructor.create(Math.sinh(real), imaginary); 2242 } 2243 final double x = Math.abs(real); 2244 if (x > SAFE_EXP) { 2245 // Approximate sinh/cosh(x) using exp^|x| / 2 2246 return coshsinh(x, real, imaginary, true, constructor); 2247 } 2248 // No overflow of sinh/cosh 2249 return constructor.create(Math.sinh(real) * Math.cos(imaginary), 2250 Math.cosh(real) * Math.sin(imaginary)); 2251 } 2252 2253 /** 2254 * Returns the 2255 * <a href="http://mathworld.wolfram.com/HyperbolicCosine.html"> 2256 * hyperbolic cosine</a> of this complex number. 2257 * 2258 * <p>\[ \cosh(z) = \frac{1}{2} \left( e^{z} + e^{-z} \right) \] 2259 * 2260 * <p>The hyperbolic cosine of \( z \) is an entire function in the complex plane 2261 * and is periodic with respect to the imaginary component with period \( 2\pi i \). 2262 * Special cases: 2263 * 2264 * <ul> 2265 * <li>{@code z.conj().cosh() == z.cosh().conj()}. 2266 * <li>This is an even function: \( \cosh(z) = \cosh(-z) \). 2267 * <li>If {@code z} is +0 + i0, returns 1 + i0. 2268 * <li>If {@code z} is +0 + i∞, returns NaN ± i0 (where the sign of the imaginary part of the result is unspecified; "invalid" floating-point operation). 2269 * <li>If {@code z} is +0 + iNaN, returns NaN ± i0 (where the sign of the imaginary part of the result is unspecified). 2270 * <li>If {@code z} is x + i∞ for finite nonzero x, returns NaN + iNaN ("invalid" floating-point operation). 2271 * <li>If {@code z} is x + iNaN for finite nonzero x, returns NaN + iNaN ("invalid" floating-point operation). 2272 * <li>If {@code z} is +∞ + i0, returns +∞ + i0. 2273 * <li>If {@code z} is +∞ + iy for finite nonzero y, returns +∞ cis(y) (see {@link #ofCis(double)}). 2274 * <li>If {@code z} is +∞ + i∞, returns ±∞ + iNaN (where the sign of the real part of the result is unspecified). 2275 * <li>If {@code z} is +∞ + iNaN, returns +∞ + iNaN. 2276 * <li>If {@code z} is NaN + i0, returns NaN ± i0 (where the sign of the imaginary part of the result is unspecified). 2277 * <li>If {@code z} is NaN + iy for all nonzero numbers y, returns NaN + iNaN ("invalid" floating-point operation). 2278 * <li>If {@code z} is NaN + iNaN, returns NaN + iNaN. 2279 * </ul> 2280 * 2281 * <p>This is implemented using real \( x \) and imaginary \( y \) parts: 2282 * 2283 * <p>\[ \cosh(x + iy) = \cosh(x)\cos(y) + i \sinh(x)\sin(y) \] 2284 * 2285 * @return The hyperbolic cosine of this complex number. 2286 * @see <a href="http://functions.wolfram.com/ElementaryFunctions/Cosh/">Cosh</a> 2287 */ 2288 public Complex cosh() { 2289 return cosh(real, imaginary, Complex::ofCartesian); 2290 } 2291 2292 /** 2293 * Returns the hyperbolic cosine of the complex number. 2294 * 2295 * <p>This function exists to allow implementation of the identity 2296 * {@code cos(z) = cosh(iz)}.<p> 2297 * 2298 * @param real Real part. 2299 * @param imaginary Imaginary part. 2300 * @param constructor Constructor. 2301 * @return The hyperbolic cosine of the complex number. 2302 */ 2303 private static Complex cosh(double real, double imaginary, ComplexConstructor constructor) { 2304 // ISO C99: Preserve the even function by mapping to positive 2305 // f(z) = f(-z) 2306 if (Double.isInfinite(real) && !Double.isFinite(imaginary)) { 2307 return constructor.create(Math.abs(real), Double.NaN); 2308 } 2309 if (real == 0) { 2310 // Imaginary-only cosh(iy) = cos(y). 2311 if (Double.isFinite(imaginary)) { 2312 // Maintain periodic property with respect to the imaginary component. 2313 // sinh(+/-0.0) * sin(+/-x) = +/-0 * sin(x) 2314 return constructor.create(Math.cos(imaginary), 2315 changeSign(real, Math.sin(imaginary))); 2316 } 2317 // If imaginary is inf/NaN the sign of the imaginary part is unspecified. 2318 // Although not required by C99 changing the sign maintains the conjugate equality. 2319 // It is not possible to also maintain the even function (hence the unspecified sign). 2320 return constructor.create(Double.NaN, changeSign(real, imaginary)); 2321 } 2322 if (imaginary == 0) { 2323 // Real-only cosh(x). 2324 // Change sign to preserve conjugate equality and even function. 2325 // sin(+/-0) * sinh(+/-x) = +/-0 * +/-a (sinh is monotonic and same sign) 2326 // => change the sign of imaginary using real. Handles special case of infinite real. 2327 // If real is NaN the sign of the imaginary part is unspecified. 2328 return constructor.create(Math.cosh(real), changeSign(imaginary, real)); 2329 } 2330 final double x = Math.abs(real); 2331 if (x > SAFE_EXP) { 2332 // Approximate sinh/cosh(x) using exp^|x| / 2 2333 return coshsinh(x, real, imaginary, false, constructor); 2334 } 2335 // No overflow of sinh/cosh 2336 return constructor.create(Math.cosh(real) * Math.cos(imaginary), 2337 Math.sinh(real) * Math.sin(imaginary)); 2338 } 2339 2340 /** 2341 * Compute cosh or sinh when the absolute real component |x| is large. In this case 2342 * cosh(x) and sinh(x) can be approximated by exp(|x|) / 2: 2343 * 2344 * <pre> 2345 * cosh(x+iy) real = (e^|x| / 2) * cos(y) 2346 * cosh(x+iy) imag = (e^|x| / 2) * sin(y) * sign(x) 2347 * sinh(x+iy) real = (e^|x| / 2) * cos(y) * sign(x) 2348 * sinh(x+iy) imag = (e^|x| / 2) * sin(y) 2349 * </pre> 2350 * 2351 * @param x Absolute real component |x|. 2352 * @param real Real part (x). 2353 * @param imaginary Imaginary part (y). 2354 * @param sinh Set to true to compute sinh, otherwise cosh. 2355 * @param constructor Constructor. 2356 * @return The hyperbolic sine/cosine of the complex number. 2357 */ 2358 private static Complex coshsinh(double x, double real, double imaginary, boolean sinh, 2359 ComplexConstructor constructor) { 2360 // Always require the cos and sin. 2361 double re = Math.cos(imaginary); 2362 double im = Math.sin(imaginary); 2363 // Compute the correct function 2364 if (sinh) { 2365 re = changeSign(re, real); 2366 } else { 2367 im = changeSign(im, real); 2368 } 2369 // Multiply by (e^|x| / 2). 2370 // Overflow safe computation since sin/cos can be very small allowing a result 2371 // when e^x overflows: e^x / 2 = (e^m / 2) * e^m * e^(x-2m) 2372 if (x > SAFE_EXP * 3) { 2373 // e^x > e^m * e^m * e^m 2374 // y * (e^m / 2) * e^m * e^m will overflow when starting with Double.MIN_VALUE. 2375 // Note: Do not multiply by +inf to safeguard against sin(y)=0.0 which 2376 // will create 0 * inf = nan. 2377 re *= Double.MAX_VALUE * Double.MAX_VALUE * Double.MAX_VALUE; 2378 im *= Double.MAX_VALUE * Double.MAX_VALUE * Double.MAX_VALUE; 2379 } else { 2380 // Initial part of (e^x / 2) using (e^m / 2) 2381 re *= EXP_M / 2; 2382 im *= EXP_M / 2; 2383 final double xm; 2384 if (x > SAFE_EXP * 2) { 2385 // e^x = e^m * e^m * e^(x-2m) 2386 re *= EXP_M; 2387 im *= EXP_M; 2388 xm = x - SAFE_EXP * 2; 2389 } else { 2390 // e^x = e^m * e^(x-m) 2391 xm = x - SAFE_EXP; 2392 } 2393 final double exp = Math.exp(xm); 2394 re *= exp; 2395 im *= exp; 2396 } 2397 return constructor.create(re, im); 2398 } 2399 2400 /** 2401 * Returns the 2402 * <a href="http://mathworld.wolfram.com/HyperbolicTangent.html"> 2403 * hyperbolic tangent</a> of this complex number. 2404 * 2405 * <p>\[ \tanh(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}} \] 2406 * 2407 * <p>The hyperbolic tangent of \( z \) is an entire function in the complex plane 2408 * and is periodic with respect to the imaginary component with period \( \pi i \) 2409 * and has poles of the first order along the imaginary line, at coordinates 2410 * \( (0, \pi(\frac{1}{2} + n)) \). 2411 * Note that the {@code double} floating-point representation is unable to exactly represent 2412 * \( \pi/2 \) and there is no value for which a pole error occurs. Special cases: 2413 * 2414 * <ul> 2415 * <li>{@code z.conj().tanh() == z.tanh().conj()}. 2416 * <li>This is an odd function: \( \tanh(z) = -\tanh(-z) \). 2417 * <li>If {@code z} is +0 + i0, returns +0 + i0. 2418 * <li>If {@code z} is 0 + i∞, returns 0 + iNaN. 2419 * <li>If {@code z} is x + i∞ for finite non-zero x, returns NaN + iNaN ("invalid" floating-point operation). 2420 * <li>If {@code z} is 0 + iNaN, returns 0 + iNAN. 2421 * <li>If {@code z} is x + iNaN for finite non-zero x, returns NaN + iNaN ("invalid" floating-point operation). 2422 * <li>If {@code z} is +∞ + iy for positive-signed finite y, returns 1 + i0 sin(2y). 2423 * <li>If {@code z} is +∞ + i∞, returns 1 ± i0 (where the sign of the imaginary part of the result is unspecified). 2424 * <li>If {@code z} is +∞ + iNaN, returns 1 ± i0 (where the sign of the imaginary part of the result is unspecified). 2425 * <li>If {@code z} is NaN + i0, returns NaN + i0. 2426 * <li>If {@code z} is NaN + iy for all nonzero numbers y, returns NaN + iNaN ("invalid" floating-point operation). 2427 * <li>If {@code z} is NaN + iNaN, returns NaN + iNaN. 2428 * </ul> 2429 * 2430 * <p>Special cases include the technical corrigendum 2431 * <a href="http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1892.htm#dr_471"> 2432 * DR 471: Complex math functions cacosh and ctanh</a>. 2433 * 2434 * <p>This is defined using real \( x \) and imaginary \( y \) parts: 2435 * 2436 * <p>\[ \tan(x + iy) = \frac{\sinh(2x)}{\cosh(2x)+\cos(2y)} + i \frac{\sin(2y)}{\cosh(2x)+\cos(2y)} \] 2437 * 2438 * <p>The implementation uses double-angle identities to avoid overflow of {@code 2x} 2439 * and {@code 2y}. 2440 * 2441 * @return The hyperbolic tangent of this complex number. 2442 * @see <a href="http://functions.wolfram.com/ElementaryFunctions/Tanh/">Tanh</a> 2443 */ 2444 public Complex tanh() { 2445 return tanh(real, imaginary, Complex::ofCartesian); 2446 } 2447 2448 /** 2449 * Returns the hyperbolic tangent of this complex number. 2450 * 2451 * <p>This function exists to allow implementation of the identity 2452 * {@code tan(z) = -i tanh(iz)}.<p> 2453 * 2454 * @param real Real part. 2455 * @param imaginary Imaginary part. 2456 * @param constructor Constructor. 2457 * @return The hyperbolic tangent of the complex number. 2458 */ 2459 private static Complex tanh(double real, double imaginary, ComplexConstructor constructor) { 2460 // Cache the absolute real value 2461 final double x = Math.abs(real); 2462 2463 // Handle inf or nan. 2464 if (!isPosFinite(x) || !Double.isFinite(imaginary)) { 2465 if (isPosInfinite(x)) { 2466 if (Double.isFinite(imaginary)) { 2467 // The sign is copied from sin(2y) 2468 // The identity sin(2a) = 2 sin(a) cos(a) is used for consistency 2469 // with the computation below. Only the magnitude is important 2470 // so drop the 2. When |y| is small sign(sin(2y)) = sign(y). 2471 final double sign = Math.abs(imaginary) < PI_OVER_2 ? 2472 imaginary : 2473 Math.sin(imaginary) * Math.cos(imaginary); 2474 return constructor.create(Math.copySign(1, real), 2475 Math.copySign(0, sign)); 2476 } 2477 // imaginary is infinite or NaN 2478 return constructor.create(Math.copySign(1, real), Math.copySign(0, imaginary)); 2479 } 2480 // Remaining cases: 2481 // (0 + i inf), returns (0 + i NaN) 2482 // (0 + i NaN), returns (0 + i NaN) 2483 // (x + i inf), returns (NaN + i NaN) for non-zero x (including infinite) 2484 // (x + i NaN), returns (NaN + i NaN) for non-zero x (including infinite) 2485 // (NaN + i 0), returns (NaN + i 0) 2486 // (NaN + i y), returns (NaN + i NaN) for non-zero y (including infinite) 2487 // (NaN + i NaN), returns (NaN + i NaN) 2488 return constructor.create(real == 0 ? real : Double.NaN, 2489 imaginary == 0 ? imaginary : Double.NaN); 2490 } 2491 2492 // Finite components 2493 // tanh(x+iy) = (sinh(2x) + i sin(2y)) / (cosh(2x) + cos(2y)) 2494 2495 if (real == 0) { 2496 // Imaginary-only tanh(iy) = i tan(y) 2497 // Identity: sin 2y / (1 + cos 2y) = tan(y) 2498 return constructor.create(real, Math.tan(imaginary)); 2499 } 2500 if (imaginary == 0) { 2501 // Identity: sinh 2x / (1 + cosh 2x) = tanh(x) 2502 return constructor.create(Math.tanh(real), imaginary); 2503 } 2504 2505 // The double angles can be avoided using the identities: 2506 // sinh(2x) = 2 sinh(x) cosh(x) 2507 // sin(2y) = 2 sin(y) cos(y) 2508 // cosh(2x) = 2 sinh^2(x) + 1 2509 // cos(2y) = 2 cos^2(y) - 1 2510 // tanh(x+iy) = (sinh(x)cosh(x) + i sin(y)cos(y)) / (sinh^2(x) + cos^2(y)) 2511 // To avoid a junction when swapping between the double angles and the identities 2512 // the identities are used in all cases. 2513 2514 if (x > SAFE_EXP / 2) { 2515 // Potential overflow in sinh/cosh(2x). 2516 // Approximate sinh/cosh using exp^x. 2517 // Ignore cos^2(y) in the divisor as it is insignificant. 2518 // real = sinh(x)cosh(x) / sinh^2(x) = +/-1 2519 final double re = Math.copySign(1, real); 2520 // imag = sin(2y) / 2 sinh^2(x) 2521 // sinh(x) -> sign(x) * e^|x| / 2 when x is large. 2522 // sinh^2(x) -> e^2|x| / 4 when x is large. 2523 // imag = sin(2y) / 2 (e^2|x| / 4) = 2 sin(2y) / e^2|x| 2524 // = 4 * sin(y) cos(y) / e^2|x| 2525 // Underflow safe divide as e^2|x| may overflow: 2526 // imag = 4 * sin(y) cos(y) / e^m / e^(2|x| - m) 2527 // (|im| is a maximum of 2) 2528 double im = Math.sin(imaginary) * Math.cos(imaginary); 2529 if (x > SAFE_EXP) { 2530 // e^2|x| > e^m * e^m 2531 // This will underflow 2.0 / e^m / e^m 2532 im = Math.copySign(0.0, im); 2533 } else { 2534 // e^2|x| = e^m * e^(2|x| - m) 2535 im = 4 * im / EXP_M / Math.exp(2 * x - SAFE_EXP); 2536 } 2537 return constructor.create(re, im); 2538 } 2539 2540 // No overflow of sinh(2x) and cosh(2x) 2541 2542 // Note: This does not use the definitional formula but uses the identity: 2543 // tanh(x+iy) = (sinh(x)cosh(x) + i sin(y)cos(y)) / (sinh^2(x) + cos^2(y)) 2544 2545 final double sinhx = Math.sinh(real); 2546 final double coshx = Math.cosh(real); 2547 final double siny = Math.sin(imaginary); 2548 final double cosy = Math.cos(imaginary); 2549 final double divisor = sinhx * sinhx + cosy * cosy; 2550 return constructor.create(sinhx * coshx / divisor, 2551 siny * cosy / divisor); 2552 } 2553 2554 /** 2555 * Returns the 2556 * <a href="http://mathworld.wolfram.com/InverseHyperbolicSine.html"> 2557 * inverse hyperbolic sine</a> of this complex number. 2558 * 2559 * <p>\[ \sinh^{-1}(z) = \ln \left(z + \sqrt{1 + z^2} \right) \] 2560 * 2561 * <p>The inverse hyperbolic sine of \( z \) is unbounded along the real axis and 2562 * in the range \( [-\pi, \pi] \) along the imaginary axis. Special cases: 2563 * 2564 * <ul> 2565 * <li>{@code z.conj().asinh() == z.asinh().conj()}. 2566 * <li>This is an odd function: \( \sinh^{-1}(z) = -\sinh^{-1}(-z) \). 2567 * <li>If {@code z} is +0 + i0, returns 0 + i0. 2568 * <li>If {@code z} is x + i∞ for positive-signed finite x, returns +∞ + iπ/2. 2569 * <li>If {@code z} is x + iNaN for finite x, returns NaN + iNaN ("invalid" floating-point operation). 2570 * <li>If {@code z} is +∞ + iy for positive-signed finite y, returns +∞ + i0. 2571 * <li>If {@code z} is +∞ + i∞, returns +∞ + iπ/4. 2572 * <li>If {@code z} is +∞ + iNaN, returns +∞ + iNaN. 2573 * <li>If {@code z} is NaN + i0, returns NaN + i0. 2574 * <li>If {@code z} is NaN + iy for finite nonzero y, returns NaN + iNaN ("invalid" floating-point operation). 2575 * <li>If {@code z} is NaN + i∞, returns ±∞ + iNaN (where the sign of the real part of the result is unspecified). 2576 * <li>If {@code z} is NaN + iNaN, returns NaN + iNaN. 2577 * </ul> 2578 * 2579 * <p>The inverse hyperbolic sine is a multivalued function and requires a branch cut in 2580 * the complex plane; the cut is conventionally placed at the line segments 2581 * \( (-i \infty,-i) \) and \( (i,i \infty) \) of the imaginary axis. 2582 * 2583 * <p>This function is computed using the trigonomic identity: 2584 * 2585 * <p>\[ \sinh^{-1}(z) = -i \sin^{-1}(iz) \] 2586 * 2587 * @return The inverse hyperbolic sine of this complex number. 2588 * @see <a href="http://functions.wolfram.com/ElementaryFunctions/ArcSinh/">ArcSinh</a> 2589 */ 2590 public Complex asinh() { 2591 // Define in terms of asin 2592 // asinh(z) = -i asin(iz) 2593 // Note: This is the opposite to the identity defined in the C99 standard: 2594 // asin(z) = -i asinh(iz) 2595 // Multiply this number by I, compute asin, then multiply by back 2596 return asin(-imaginary, real, Complex::multiplyNegativeI); 2597 } 2598 2599 /** 2600 * Returns the 2601 * <a href="http://mathworld.wolfram.com/InverseHyperbolicCosine.html"> 2602 * inverse hyperbolic cosine</a> of this complex number. 2603 * 2604 * <p>\[ \cosh^{-1}(z) = \ln \left(z + \sqrt{z + 1} \sqrt{z - 1} \right) \] 2605 * 2606 * <p>The inverse hyperbolic cosine of \( z \) is in the range \( [0, \infty) \) along the 2607 * real axis and in the range \( [-\pi, \pi] \) along the imaginary axis. Special cases: 2608 * 2609 * <ul> 2610 * <li>{@code z.conj().acosh() == z.acosh().conj()}. 2611 * <li>If {@code z} is ±0 + i0, returns +0 + iπ/2. 2612 * <li>If {@code z} is x + i∞ for finite x, returns +∞ + iπ/2. 2613 * <li>If {@code z} is 0 + iNaN, returns NaN + iπ/2 <sup>[1]</sup>. 2614 * <li>If {@code z} is x + iNaN for finite non-zero x, returns NaN + iNaN ("invalid" floating-point operation). 2615 * <li>If {@code z} is −∞ + iy for positive-signed finite y, returns +∞ + iπ. 2616 * <li>If {@code z} is +∞ + iy for positive-signed finite y, returns +∞ + i0. 2617 * <li>If {@code z} is −∞ + i∞, returns +∞ + i3π/4. 2618 * <li>If {@code z} is +∞ + i∞, returns +∞ + iπ/4. 2619 * <li>If {@code z} is ±∞ + iNaN, returns +∞ + iNaN. 2620 * <li>If {@code z} is NaN + iy for finite y, returns NaN + iNaN ("invalid" floating-point operation). 2621 * <li>If {@code z} is NaN + i∞, returns +∞ + iNaN. 2622 * <li>If {@code z} is NaN + iNaN, returns NaN + iNaN. 2623 * </ul> 2624 * 2625 * <p>Special cases include the technical corrigendum 2626 * <a href="http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1892.htm#dr_471"> 2627 * DR 471: Complex math functions cacosh and ctanh</a>. 2628 * 2629 * <p>The inverse hyperbolic cosine is a multivalued function and requires a branch cut in 2630 * the complex plane; the cut is conventionally placed at the line segment 2631 * \( (-\infty,-1) \) of the real axis. 2632 * 2633 * <p>This function is computed using the trigonomic identity: 2634 * 2635 * <p>\[ \cosh^{-1}(z) = \pm i \cos^{-1}(z) \] 2636 * 2637 * <p>The sign of the multiplier is chosen to give {@code z.acosh().real() >= 0} 2638 * and compatibility with the C99 standard. 2639 * 2640 * @return The inverse hyperbolic cosine of this complex number. 2641 * @see <a href="http://functions.wolfram.com/ElementaryFunctions/ArcCosh/">ArcCosh</a> 2642 */ 2643 public Complex acosh() { 2644 // Define in terms of acos 2645 // acosh(z) = +-i acos(z) 2646 // Note the special case: 2647 // acos(+-0 + iNaN) = π/2 + iNaN 2648 // acosh(0 + iNaN) = NaN + iπ/2 2649 // will not appropriately multiply by I to maintain positive imaginary if 2650 // acos() imaginary computes as NaN. So do this explicitly. 2651 if (Double.isNaN(imaginary) && real == 0) { 2652 return new Complex(Double.NaN, PI_OVER_2); 2653 } 2654 return acos(real, imaginary, (re, im) -> 2655 // Set the sign appropriately for real >= 0 2656 negative(im) ? 2657 // Multiply by I 2658 new Complex(-im, re) : 2659 // Multiply by -I 2660 new Complex(im, -re) 2661 ); 2662 } 2663 2664 /** 2665 * Returns the 2666 * <a href="http://mathworld.wolfram.com/InverseHyperbolicTangent.html"> 2667 * inverse hyperbolic tangent</a> of this complex number. 2668 * 2669 * <p>\[ \tanh^{-1}(z) = \frac{1}{2} \ln \left( \frac{1 + z}{1 - z} \right) \] 2670 * 2671 * <p>The inverse hyperbolic tangent of \( z \) is unbounded along the real axis and 2672 * in the range \( [-\pi/2, \pi/2] \) along the imaginary axis. Special cases: 2673 * 2674 * <ul> 2675 * <li>{@code z.conj().atanh() == z.atanh().conj()}. 2676 * <li>This is an odd function: \( \tanh^{-1}(z) = -\tanh^{-1}(-z) \). 2677 * <li>If {@code z} is +0 + i0, returns +0 + i0. 2678 * <li>If {@code z} is +0 + iNaN, returns +0 + iNaN. 2679 * <li>If {@code z} is +1 + i0, returns +∞ + i0 ("divide-by-zero" floating-point operation). 2680 * <li>If {@code z} is x + i∞ for finite positive-signed x, returns +0 + iπ/2. 2681 * <li>If {@code z} is x+iNaN for nonzero finite x, returns NaN+iNaN ("invalid" floating-point operation). 2682 * <li>If {@code z} is +∞ + iy for finite positive-signed y, returns +0 + iπ/2. 2683 * <li>If {@code z} is +∞ + i∞, returns +0 + iπ/2. 2684 * <li>If {@code z} is +∞ + iNaN, returns +0 + iNaN. 2685 * <li>If {@code z} is NaN+iy for finite y, returns NaN+iNaN ("invalid" floating-point operation). 2686 * <li>If {@code z} is NaN + i∞, returns ±0 + iπ/2 (where the sign of the real part of the result is unspecified). 2687 * <li>If {@code z} is NaN + iNaN, returns NaN + iNaN. 2688 * </ul> 2689 * 2690 * <p>The inverse hyperbolic tangent is a multivalued function and requires a branch cut in 2691 * the complex plane; the cut is conventionally placed at the line segments 2692 * \( (\infty,-1] \) and \( [1,\infty) \) of the real axis. 2693 * 2694 * <p>This is implemented using real \( x \) and imaginary \( y \) parts: 2695 * 2696 * <p>\[ \tanh^{-1}(z) = \frac{1}{4} \ln \left(1 + \frac{4x}{(1-x)^2+y^2} \right) + \\ 2697 * i \frac{1}{2} \left( \tan^{-1} \left(\frac{2y}{1-x^2-y^2} \right) + \frac{\pi}{2} \left(\text{sgn}(x^2+y^2-1)+1 \right) \text{sgn}(y) \right) \] 2698 * 2699 * <p>The imaginary part is computed using {@link Math#atan2(double, double)} to ensure the 2700 * correct quadrant is returned from \( \tan^{-1} \left(\frac{2y}{1-x^2-y^2} \right) \). 2701 * 2702 * <p>The code has been adapted from the <a href="https://www.boost.org/">Boost</a> 2703 * {@code c++} implementation {@code <boost/math/complex/atanh.hpp>}. 2704 * 2705 * @return The inverse hyperbolic tangent of this complex number. 2706 * @see <a href="http://functions.wolfram.com/ElementaryFunctions/ArcTanh/">ArcTanh</a> 2707 */ 2708 public Complex atanh() { 2709 return atanh(real, imaginary, Complex::ofCartesian); 2710 } 2711 2712 /** 2713 * Returns the inverse hyperbolic tangent of this complex number. 2714 * 2715 * <p>This function exists to allow implementation of the identity 2716 * {@code atan(z) = -i atanh(iz)}. 2717 * 2718 * <p>Adapted from {@code <boost/math/complex/atanh.hpp>}. This method only (and not 2719 * invoked methods within) is distributed under the Boost Software License V1.0. 2720 * The original notice is shown below and the licence is shown in full in LICENSE: 2721 * <pre> 2722 * (C) Copyright John Maddock 2005. 2723 * Distributed under the Boost Software License, Version 1.0. (See accompanying 2724 * file LICENSE or copy at https://www.boost.org/LICENSE_1_0.txt) 2725 * </pre> 2726 * 2727 * @param real Real part. 2728 * @param imaginary Imaginary part. 2729 * @param constructor Constructor. 2730 * @return The inverse hyperbolic tangent of the complex number. 2731 */ 2732 private static Complex atanh(final double real, final double imaginary, 2733 final ComplexConstructor constructor) { 2734 // Compute with positive values and determine sign at the end 2735 double x = Math.abs(real); 2736 double y = Math.abs(imaginary); 2737 // The result (without sign correction) 2738 double re; 2739 double im; 2740 2741 // Handle C99 special cases 2742 if (Double.isNaN(x)) { 2743 if (isPosInfinite(y)) { 2744 // The sign of the real part of the result is unspecified 2745 return constructor.create(0, Math.copySign(PI_OVER_2, imaginary)); 2746 } 2747 // No-use of the input constructor. 2748 // Optionally raises the ‘‘invalid’’ floating-point exception, for finite y. 2749 return NAN; 2750 } else if (Double.isNaN(y)) { 2751 if (isPosInfinite(x)) { 2752 return constructor.create(Math.copySign(0, real), Double.NaN); 2753 } 2754 if (x == 0) { 2755 return constructor.create(real, Double.NaN); 2756 } 2757 // No-use of the input constructor 2758 return NAN; 2759 } else { 2760 // x && y are finite or infinite. 2761 2762 // Check the safe region. 2763 // The lower and upper bounds have been copied from boost::math::atanh. 2764 // They are different from the safe region for asin and acos. 2765 // x >= SAFE_UPPER: (1-x) == -x 2766 // x <= SAFE_LOWER: 1 - x^2 = 1 2767 2768 if (inRegion(x, y, SAFE_LOWER, SAFE_UPPER)) { 2769 // Normal computation within a safe region. 2770 2771 // minus x plus 1: (-x+1) 2772 final double mxp1 = 1 - x; 2773 final double yy = y * y; 2774 // The definition of real component is: 2775 // real = log( ((x+1)^2+y^2) / ((1-x)^2+y^2) ) / 4 2776 // This simplifies by adding 1 and subtracting 1 as a fraction: 2777 // = log(1 + ((x+1)^2+y^2) / ((1-x)^2+y^2) - ((1-x)^2+y^2)/((1-x)^2+y^2) ) / 4 2778 // 2779 // real(atanh(z)) == log(1 + 4*x / ((1-x)^2+y^2)) / 4 2780 // imag(atanh(z)) == tan^-1 (2y, (1-x)(1+x) - y^2) / 2 2781 // imag(atanh(z)) == tan^-1 (2y, (1 - x^2 - y^2) / 2 2782 // The division is done at the end of the function. 2783 re = Math.log1p(4 * x / (mxp1 * mxp1 + yy)); 2784 // Modified from boost which does not switch the magnitude of x and y. 2785 // The denominator for atan2 is 1 - x^2 - y^2. 2786 // This can be made more precise if |x| > |y|. 2787 final double numerator = 2 * y; 2788 final double denominator; 2789 if (x < y) { 2790 final double tmp = x; 2791 x = y; 2792 y = tmp; 2793 } 2794 // 1 - x is precise if |x| >= 1 2795 if (x >= 1) { 2796 denominator = (1 - x) * (1 + x) - y * y; 2797 } else { 2798 // |x| < 1: Use high precision if possible: 2799 // 1 - x^2 - y^2 = -(x^2 + y^2 - 1) 2800 // Modified from boost to use the custom high precision method. 2801 denominator = -x2y2m1(x, y); 2802 } 2803 im = Math.atan2(numerator, denominator); 2804 } else { 2805 // This section handles exception cases that would normally cause 2806 // underflow or overflow in the main formulas. 2807 2808 // C99. G.7: Special case for imaginary only numbers 2809 if (x == 0) { 2810 if (imaginary == 0) { 2811 return constructor.create(real, imaginary); 2812 } 2813 // atanh(iy) = i atan(y) 2814 return constructor.create(real, Math.atan(imaginary)); 2815 } 2816 2817 // Real part: 2818 // real = Math.log1p(4x / ((1-x)^2 + y^2)) 2819 // real = Math.log1p(4x / (1 - 2x + x^2 + y^2)) 2820 // real = Math.log1p(4x / (1 + x(x-2) + y^2)) 2821 // without either overflow or underflow in the squared terms. 2822 if (x >= SAFE_UPPER) { 2823 // (1-x) = -x to machine precision: 2824 // log1p(4x / (x^2 + y^2)) 2825 if (isPosInfinite(x) || isPosInfinite(y)) { 2826 re = 0; 2827 } else if (y >= SAFE_UPPER) { 2828 // Big x and y: divide by x*y 2829 re = Math.log1p((4 / y) / (x / y + y / x)); 2830 } else if (y > 1) { 2831 // Big x: divide through by x: 2832 re = Math.log1p(4 / (x + y * y / x)); 2833 } else { 2834 // Big x small y, as above but neglect y^2/x: 2835 re = Math.log1p(4 / x); 2836 } 2837 } else if (y >= SAFE_UPPER) { 2838 if (x > 1) { 2839 // Big y, medium x, divide through by y: 2840 final double mxp1 = 1 - x; 2841 re = Math.log1p((4 * x / y) / (mxp1 * mxp1 / y + y)); 2842 } else { 2843 // Big y, small x, as above but neglect (1-x)^2/y: 2844 // Note: log1p(v) == v - v^2/2 + v^3/3 ... Taylor series when v is small. 2845 // Here v is so small only the first term matters. 2846 re = 4 * x / y / y; 2847 } 2848 } else if (x == 1) { 2849 // x = 1, small y: 2850 // Special case when x == 1 as (1-x) is invalid. 2851 // Simplify the following formula: 2852 // real = log( sqrt((x+1)^2+y^2) ) / 2 - log( sqrt((1-x)^2+y^2) ) / 2 2853 // = log( sqrt(4+y^2) ) / 2 - log(y) / 2 2854 // if: 4+y^2 -> 4 2855 // = log( 2 ) / 2 - log(y) / 2 2856 // = (log(2) - log(y)) / 2 2857 // Multiply by 2 as it will be divided by 4 at the end. 2858 // C99: if y=0 raises the ‘‘divide-by-zero’’ floating-point exception. 2859 re = 2 * (LN_2 - Math.log(y)); 2860 } else { 2861 // Modified from boost which checks y > SAFE_LOWER. 2862 // if y*y -> 0 it will be ignored so always include it. 2863 final double mxp1 = 1 - x; 2864 re = Math.log1p((4 * x) / (mxp1 * mxp1 + y * y)); 2865 } 2866 2867 // Imaginary part: 2868 // imag = atan2(2y, (1-x)(1+x) - y^2) 2869 // if x or y are large, then the formula: 2870 // atan2(2y, (1-x)(1+x) - y^2) 2871 // evaluates to +(PI - theta) where theta is negligible compared to PI. 2872 if (x >= SAFE_UPPER || y >= SAFE_UPPER) { 2873 im = Math.PI; 2874 } else if (x <= SAFE_LOWER) { 2875 // (1-x)^2 -> 1 2876 if (y <= SAFE_LOWER) { 2877 // 1 - y^2 -> 1 2878 im = Math.atan2(2 * y, 1); 2879 } else { 2880 im = Math.atan2(2 * y, 1 - y * y); 2881 } 2882 } else { 2883 // Medium x, small y. 2884 // Modified from boost which checks (y == 0) && (x == 1) and sets re = 0. 2885 // This is same as the result from calling atan2(0, 0) so exclude this case. 2886 // 1 - y^2 = 1 so ignore subtracting y^2 2887 im = Math.atan2(2 * y, (1 - x) * (1 + x)); 2888 } 2889 } 2890 } 2891 2892 re /= 4; 2893 im /= 2; 2894 return constructor.create(changeSign(re, real), 2895 changeSign(im, imaginary)); 2896 } 2897 2898 /** 2899 * Compute {@code x^2 + y^2 - 1} in high precision. 2900 * Assumes that the values x and y can be multiplied without overflow; that 2901 * {@code x >= y}; and both values are positive. 2902 * 2903 * @param x the x value 2904 * @param y the y value 2905 * @return {@code x^2 + y^2 - 1}. 2906 */ 2907 private static double x2y2m1(double x, double y) { 2908 // Hull et al used (x-1)*(x+1)+y*y. 2909 // From the paper on page 236: 2910 2911 // If x == 1 there is no cancellation. 2912 2913 // If x > 1, there is also no cancellation, but the argument is now accurate 2914 // only to within a factor of 1 + 3 EPSILSON (note that x – 1 is exact), 2915 // so that error = 3 EPSILON. 2916 2917 // If x < 1, there can be serious cancellation: 2918 2919 // If 4 y^2 < |x^2 – 1| the cancellation is not serious ... the argument is accurate 2920 // only to within a factor of 1 + 4 EPSILSON so that error = 4 EPSILON. 2921 2922 // Otherwise there can be serious cancellation and the relative error in the real part 2923 // could be enormous. 2924 2925 final double xx = x * x; 2926 final double yy = y * y; 2927 // Modify to use high precision before the threshold set by Hull et al. 2928 // This is to preserve the monotonic output of the computation at the switch. 2929 // Set the threshold when x^2 + y^2 is above 0.5 thus subtracting 1 results in a number 2930 // that can be expressed with a higher precision than any number in the range 0.5-1.0 2931 // due to the variable exponent used below 0.5. 2932 if (x < 1 && xx + yy > 0.5) { 2933 // Large relative error. 2934 // This does not use o.a.c.numbers.LinearCombination.value(x, x, y, y, 1, -1). 2935 // It is optimised knowing that: 2936 // - the products are squares 2937 // - the final term is -1 (which does not require split multiplication and addition) 2938 // - The answer will not be NaN as the terms are not NaN components 2939 // - The order is known to be 1 > |x| >= |y| 2940 // The squares are computed using a split multiply algorithm and 2941 // the summation using an extended precision summation algorithm. 2942 2943 // Split x and y as one 26 bits number and one 27 bits number 2944 final double xHigh = splitHigh(x); 2945 final double xLow = x - xHigh; 2946 final double yHigh = splitHigh(y); 2947 final double yLow = y - yHigh; 2948 2949 // Accurate split multiplication x * x and y * y 2950 final double x2Low = squareLow(xLow, xHigh, xx); 2951 final double y2Low = squareLow(yLow, yHigh, yy); 2952 2953 return sumx2y2m1(xx, x2Low, yy, y2Low); 2954 } 2955 return (x - 1) * (x + 1) + yy; 2956 } 2957 2958 /** 2959 * Implement Dekker's method to split a value into two parts. Multiplying by (2^s + 1) create 2960 * a big value from which to derive the two split parts. 2961 * <pre> 2962 * c = (2^s + 1) * a 2963 * a_big = c - a 2964 * a_hi = c - a_big 2965 * a_lo = a - a_hi 2966 * a = a_hi + a_lo 2967 * </pre> 2968 * 2969 * <p>The multiplicand must be odd allowing a p-bit value to be split into 2970 * (p-s)-bit value {@code a_hi} and a non-overlapping (s-1)-bit value {@code a_lo}. 2971 * Combined they have (p-1) bits of significand but the sign bit of {@code a_lo} 2972 * contains a bit of information. 2973 * 2974 * @param a Value. 2975 * @return the high part of the value. 2976 * @see <a href="https://doi.org/10.1007/BF01397083"> 2977 * Dekker (1971) A floating-point technique for extending the available precision</a> 2978 */ 2979 private static double splitHigh(double a) { 2980 final double c = MULTIPLIER * a; 2981 return c - (c - a); 2982 } 2983 2984 /** 2985 * Compute the round-off from the square of a split number with {@code low} and {@code high} 2986 * components. Uses Dekker's algorithm for split multiplication modified for a square product. 2987 * 2988 * <p>Note: This is candidate to be replaced with {@code Math.fma(x, x, -x * x)} to compute 2989 * the round-off from the square product {@code x * x}. This would remove the requirement 2990 * to compute the split number and make this method redundant. {@code Math.fma} requires 2991 * JDK 9 and FMA hardware support. 2992 * 2993 * @param low Low part of number. 2994 * @param high High part of number. 2995 * @param square Square of the number. 2996 * @return <code>low * low - (((product - high * high) - low * high) - high * low)</code> 2997 * @see <a href="http://www-2.cs.cmu.edu/afs/cs/project/quake/public/papers/robust-arithmetic.ps"> 2998 * Shewchuk (1997) Theorum 18</a> 2999 */ 3000 private static double squareLow(double low, double high, double square) { 3001 final double lh = low * high; 3002 return low * low - (((square - high * high) - lh) - lh); 3003 } 3004 3005 /** 3006 * Compute the round-off from the sum of two numbers {@code a} and {@code b} using 3007 * Dekker's two-sum algorithm. The values are required to be ordered by magnitude: 3008 * {@code |a| >= |b|}. 3009 * 3010 * @param a First part of sum. 3011 * @param b Second part of sum. 3012 * @param x Sum. 3013 * @return <code>b - (x - a)</code> 3014 * @see <a href="http://www-2.cs.cmu.edu/afs/cs/project/quake/public/papers/robust-arithmetic.ps"> 3015 * Shewchuk (1997) Theorum 6</a> 3016 */ 3017 private static double fastSumLow(double a, double b, double x) { 3018 // x = a + b 3019 // bVirtual = x - a 3020 // y = b - bVirtual 3021 return b - (x - a); 3022 } 3023 3024 /** 3025 * Compute the round-off from the sum of two numbers {@code a} and {@code b} using 3026 * Knuth's two-sum algorithm. The values are not required to be ordered by magnitude. 3027 * 3028 * @param a First part of sum. 3029 * @param b Second part of sum. 3030 * @param x Sum. 3031 * @return <code>(a - (x - (x - a))) + (b - (x - a))</code> 3032 * @see <a href="http://www-2.cs.cmu.edu/afs/cs/project/quake/public/papers/robust-arithmetic.ps"> 3033 * Shewchuk (1997) Theorum 7</a> 3034 */ 3035 private static double sumLow(double a, double b, double x) { 3036 // x = a + b 3037 // bVirtual = x - a 3038 // aVirtual = x - bVirtual 3039 // bRoundoff = b - bVirtual 3040 // aRoundoff = a - aVirtual 3041 // y = aRoundoff + bRoundoff 3042 final double bVirtual = x - a; 3043 return (a - (x - bVirtual)) + (b - bVirtual); 3044 } 3045 3046 /** 3047 * Sum x^2 + y^2 - 1. It is assumed that {@code y <= x < 1}. 3048 * 3049 * <p>Implement Shewchuk's expansion-sum algorithm: [x2Low, x2High] + [-1] + [y2Low, y2High]. 3050 * 3051 * @param x2High High part of x^2. 3052 * @param x2Low Low part of x^2. 3053 * @param y2High High part of y^2. 3054 * @param y2Low Low part of y^2. 3055 * @return x^2 + y^2 - 1 3056 * @see <a href="http://www-2.cs.cmu.edu/afs/cs/project/quake/public/papers/robust-arithmetic.ps"> 3057 * Shewchuk (1997) Theorum 12</a> 3058 */ 3059 private static double sumx2y2m1(double x2High, double x2Low, double y2High, double y2Low) { 3060 // Let e and f be non-overlapping expansions of components of length m and n. 3061 // The following algorithm will produce a non-overlapping expansion h where the 3062 // sum h_i = e + f and components of h are in increasing order of magnitude. 3063 3064 // Expansion-sum proceeds by a grow-expansion of the first part from one expansion 3065 // into the other, extending its length by 1. The process repeats for the next part 3066 // but the grow-expansion starts at the previous merge position + 1. 3067 // Thus expansion-sum requires mn two-sum operations to merge length m into length n 3068 // resulting in length m+n-1. 3069 3070 // Variables numbered from 1 as per Figure 7 (p.12). The output expansion h is placed 3071 // into e increasing its length for each grow expansion. 3072 3073 // We have two expansions for x^2 and y^2 and the whole number -1. 3074 // Expecting (x^2 + y^2) close to 1 we generate first the intermediate expansion 3075 // (x^2 - 1) moving the result away from 1 where there are sparse floating point 3076 // representations. This is then added to a similar magnitude y^2. Leaving the -1 3077 // until last suffers from 1 ulp rounding errors more often and the requirement 3078 // for a distillation sum to reduce rounding error frequency. 3079 3080 // Note: Do not use the alternative fast-expansion-sum of the parts sorted by magnitude. 3081 // The parts can be ordered with a single comparison into: 3082 // [y2Low, (y2High|x2Low), x2High, -1] 3083 // The fast-two-sum saves 1 fast-two-sum and 3 two-sum operations (21 additions) and 3084 // adds a penalty of a single branch condition. 3085 // However the order in not "strongly non-overlapping" and the fast-expansion-sum 3086 // output will not be strongly non-overlapping. The sum of the output has 1 ulp error 3087 // on random cis numbers approximately 1 in 160 events. This can be removed by a 3088 // distillation two-sum pass over the final expansion as a cost of 1 fast-two-sum and 3089 // 3 two-sum operations! So we use the expansion sum with the same operations and 3090 // no branches. 3091 3092 // q=running sum 3093 double q = x2Low - 1; 3094 double e1 = fastSumLow(-1, x2Low, q); 3095 double e3 = q + x2High; 3096 double e2 = sumLow(q, x2High, e3); 3097 3098 final double f1 = y2Low; 3099 final double f2 = y2High; 3100 3101 // Grow expansion of f1 into e 3102 q = f1 + e1; 3103 e1 = sumLow(f1, e1, q); 3104 double p = q + e2; 3105 e2 = sumLow(q, e2, p); 3106 double e4 = p + e3; 3107 e3 = sumLow(p, e3, e4); 3108 3109 // Grow expansion of f2 into e (only required to start at e2) 3110 q = f2 + e2; 3111 e2 = sumLow(f2, e2, q); 3112 p = q + e3; 3113 e3 = sumLow(q, e3, p); 3114 final double e5 = p + e4; 3115 e4 = sumLow(p, e4, e5); 3116 3117 // Final summation: 3118 // The sum of the parts is within 1 ulp of the true expansion value e: 3119 // |e - sum| < ulp(sum). 3120 // To achieve the exact result requires iteration of a distillation two-sum through 3121 // the expansion until convergence, i.e. no smaller term changes higher terms. 3122 // This requires (n-1) iterations for length n. Here we neglect this as 3123 // although the method is not ensured to be exact is it robust on random 3124 // cis numbers. 3125 return e1 + e2 + e3 + e4 + e5; 3126 } 3127 3128 /** 3129 * Returns the n-th roots of this complex number. 3130 * The nth roots are defined by the formula: 3131 * 3132 * <p>\[ z_k = |z|^{\frac{1}{n}} \left( \cos \left(\phi + \frac{2\pi k}{n} \right) + i \sin \left(\phi + \frac{2\pi k}{n} \right) \right) \] 3133 * 3134 * <p>for \( k=0, 1, \ldots, n-1 \), where \( |z| \) and \( \phi \) 3135 * are respectively the {@link #abs() modulus} and 3136 * {@link #arg() argument} of this complex number. 3137 * 3138 * <p>If one or both parts of this complex number is NaN, a list with all 3139 * all elements set to {@code NaN + i NaN} is returned.</p> 3140 * 3141 * @param n Degree of root. 3142 * @return A list of all {@code n}-th roots of this complex number. 3143 * @throws IllegalArgumentException if {@code n} is zero. 3144 * @see <a href="http://functions.wolfram.com/ElementaryFunctions/Root/">Root</a> 3145 */ 3146 public List<Complex> nthRoot(int n) { 3147 if (n == 0) { 3148 throw new IllegalArgumentException("cannot compute zeroth root"); 3149 } 3150 3151 final List<Complex> result = new ArrayList<>(); 3152 3153 // nth root of abs -- faster / more accurate to use a solver here? 3154 final double nthRootOfAbs = Math.pow(abs(), 1.0 / n); 3155 3156 // Compute nth roots of complex number with k = 0, 1, ... n-1 3157 final double nthPhi = arg() / n; 3158 final double slice = 2 * Math.PI / n; 3159 double innerPart = nthPhi; 3160 for (int k = 0; k < Math.abs(n); k++) { 3161 // inner part 3162 final double realPart = nthRootOfAbs * Math.cos(innerPart); 3163 final double imaginaryPart = nthRootOfAbs * Math.sin(innerPart); 3164 result.add(ofCartesian(realPart, imaginaryPart)); 3165 innerPart += slice; 3166 } 3167 3168 return result; 3169 } 3170 3171 /** 3172 * Test for equality with another object. If the other object is a {@code Complex} then a 3173 * comparison is made of the real and imaginary parts; otherwise {@code false} is returned. 3174 * 3175 * <p>If both the real and imaginary parts of two complex numbers 3176 * are exactly the same the two {@code Complex} objects are considered to be equal. 3177 * For this purpose, two {@code double} values are considered to be 3178 * the same if and only if the method {@link Double #doubleToLongBits(double)} 3179 * returns the identical {@code long} value when applied to each. 3180 * 3181 * <p>Note that in most cases, for two instances of class 3182 * {@code Complex}, {@code c1} and {@code c2}, the 3183 * value of {@code c1.equals(c2)} is {@code true} if and only if 3184 * 3185 * <pre> 3186 * {@code c1.getReal() == c2.getReal() && c1.getImaginary() == c2.getImaginary()}</pre> 3187 * 3188 * <p>also has the value {@code true}. However, there are exceptions: 3189 * 3190 * <ul> 3191 * <li> 3192 * Instances that contain {@code NaN} values in the same part 3193 * are considered to be equal for that part, even though {@code Double.NaN == Double.NaN} 3194 * has the value {@code false}. 3195 * </li> 3196 * <li> 3197 * Instances that share a {@code NaN} value in one part 3198 * but have different values in the other part are <em>not</em> considered equal. 3199 * </li> 3200 * <li> 3201 * Instances that contain different representations of zero in the same part 3202 * are <em>not</em> considered to be equal for that part, even though {@code -0.0 == 0.0} 3203 * has the value {@code true}. 3204 * </li> 3205 * </ul> 3206 * 3207 * <p>The behavior is the same as if the components of the two complex numbers were passed 3208 * to {@link java.util.Arrays#equals(double[], double[]) Arrays.equals(double[], double[])}: 3209 * 3210 * <pre> 3211 * Arrays.equals(new double[]{c1.getReal(), c1.getImaginary()}, 3212 * new double[]{c2.getReal(), c2.getImaginary()}); </pre> 3213 * 3214 * @param other Object to test for equality with this instance. 3215 * @return {@code true} if the objects are equal, {@code false} if object 3216 * is {@code null}, not an instance of {@code Complex}, or not equal to 3217 * this instance. 3218 * @see Double#doubleToLongBits(double) 3219 * @see java.util.Arrays#equals(double[], double[]) 3220 */ 3221 @Override 3222 public boolean equals(Object other) { 3223 if (this == other) { 3224 return true; 3225 } 3226 if (other instanceof Complex) { 3227 final Complex c = (Complex) other; 3228 return equals(real, c.real) && 3229 equals(imaginary, c.imaginary); 3230 } 3231 return false; 3232 } 3233 3234 /** 3235 * Gets a hash code for the complex number. 3236 * 3237 * <p>The behavior is the same as if the components of the complex number were passed 3238 * to {@link java.util.Arrays#hashCode(double[]) Arrays.hashCode(double[])}: 3239 * 3240 * <pre> 3241 * {@code Arrays.hashCode(new double[] {getReal(), getImaginary()})}</pre> 3242 * 3243 * @return A hash code value for this object. 3244 * @see java.util.Arrays#hashCode(double[]) Arrays.hashCode(double[]) 3245 */ 3246 @Override 3247 public int hashCode() { 3248 return 31 * (31 + Double.hashCode(real)) + Double.hashCode(imaginary); 3249 } 3250 3251 /** 3252 * Returns a string representation of the complex number. 3253 * 3254 * <p>The string will represent the numeric values of the real and imaginary parts. 3255 * The values are split by a separator and surrounded by parentheses. 3256 * The string can be {@link #parse(String) parsed} to obtain an instance with the same value. 3257 * 3258 * <p>The format for complex number \( x + i y \) is {@code "(x,y)"}, with \( x \) and 3259 * \( y \) converted as if using {@link Double#toString(double)}. 3260 * 3261 * @return A string representation of the complex number. 3262 * @see #parse(String) 3263 * @see Double#toString(double) 3264 */ 3265 @Override 3266 public String toString() { 3267 return new StringBuilder(TO_STRING_SIZE) 3268 .append(FORMAT_START) 3269 .append(real).append(FORMAT_SEP) 3270 .append(imaginary) 3271 .append(FORMAT_END) 3272 .toString(); 3273 } 3274 3275 /** 3276 * Returns {@code true} if the values are equal according to semantics of 3277 * {@link Double#equals(Object)}. 3278 * 3279 * @param x Value 3280 * @param y Value 3281 * @return {@code Double.valueof(x).equals(Double.valueOf(y))}. 3282 */ 3283 private static boolean equals(double x, double y) { 3284 return Double.doubleToLongBits(x) == Double.doubleToLongBits(y); 3285 } 3286 3287 /** 3288 * Check that a value is negative. It must meet all the following conditions: 3289 * <ul> 3290 * <li>it is not {@code NaN},</li> 3291 * <li>it is negative signed,</li> 3292 * </ul> 3293 * 3294 * <p>Note: This is true for negative zero.</p> 3295 * 3296 * @param d Value. 3297 * @return {@code true} if {@code d} is negative. 3298 */ 3299 private static boolean negative(double d) { 3300 return d < 0 || Double.doubleToLongBits(d) == NEGATIVE_ZERO_LONG_BITS; 3301 } 3302 3303 /** 3304 * Check that a value is positive infinity. Used to replace {@link Double#isInfinite()} 3305 * when the input value is known to be positive (i.e. in the case where it has been 3306 * set using {@link Math#abs(double)}). 3307 * 3308 * @param d Value. 3309 * @return {@code true} if {@code d} is +inf. 3310 */ 3311 private static boolean isPosInfinite(double d) { 3312 return d == Double.POSITIVE_INFINITY; 3313 } 3314 3315 /** 3316 * Check that an absolute value is finite. Used to replace {@link Double#isFinite(double)} 3317 * when the input value is known to be positive (i.e. in the case where it has been 3318 * set using {@link Math#abs(double)}). 3319 * 3320 * @param d Value. 3321 * @return {@code true} if {@code d} is +finite. 3322 */ 3323 private static boolean isPosFinite(double d) { 3324 return d <= Double.MAX_VALUE; 3325 } 3326 3327 /** 3328 * Create a complex number given the real and imaginary parts, then multiply by {@code -i}. 3329 * This is used in functions that implement trigonomic identities. It is the functional 3330 * equivalent of: 3331 * 3332 * <pre> 3333 * z = new Complex(real, imaginary).multiplyImaginary(-1);</pre> 3334 * 3335 * @param real Real part. 3336 * @param imaginary Imaginary part. 3337 * @return {@code Complex} object. 3338 */ 3339 private static Complex multiplyNegativeI(double real, double imaginary) { 3340 return new Complex(imaginary, -real); 3341 } 3342 3343 /** 3344 * Change the sign of the magnitude based on the signed value. 3345 * 3346 * <p>If the signed value is negative then the result is {@code -magnitude}; otherwise 3347 * return {@code magnitude}. 3348 * 3349 * <p>A signed value of {@code -0.0} is treated as negative. A signed value of {@code NaN} 3350 * is treated as positive. 3351 * 3352 * <p>This is not the same as {@link Math#copySign(double, double)} as this method 3353 * will change the sign based on the signed value rather than copy the sign. 3354 * 3355 * @param magnitude the magnitude 3356 * @param signedValue the signed value 3357 * @return magnitude or -magnitude. 3358 * @see #negative(double) 3359 */ 3360 private static double changeSign(double magnitude, double signedValue) { 3361 return negative(signedValue) ? -magnitude : magnitude; 3362 } 3363 3364 /** 3365 * Returns a scale suitable for use with {@link Math#scalb(double, int)} to normalise 3366 * the number to the interval {@code [1, 2)}. 3367 * 3368 * <p>The scale is typically the largest unbiased exponent used in the representation of the 3369 * two numbers. In contrast to {@link Math#getExponent(double)} this handles 3370 * sub-normal numbers by computing the number of leading zeros in the mantissa 3371 * and shifting the unbiased exponent. The result is that for all finite, non-zero, 3372 * numbers {@code a, b}, the magnitude of {@code scalb(x, -getScale(a, b))} is 3373 * always in the range {@code [1, 2)}, where {@code x = max(|a|, |b|)}. 3374 * 3375 * <p>This method is a functional equivalent of the c function ilogb(double) adapted for 3376 * two input arguments. 3377 * 3378 * <p>The result is to be used to scale a complex number using {@link Math#scalb(double, int)}. 3379 * Hence the special case of both zero arguments is handled using the return value for NaN 3380 * as zero cannot be scaled. This is different from {@link Math#getExponent(double)} 3381 * or {@link #getMaxExponent(double, double)}. 3382 * 3383 * <p>Special cases: 3384 * 3385 * <ul> 3386 * <li>If either argument is NaN or infinite, then the result is 3387 * {@link Double#MAX_EXPONENT} + 1. 3388 * <li>If both arguments are zero, then the result is 3389 * {@link Double#MAX_EXPONENT} + 1. 3390 * </ul> 3391 * 3392 * @param a the first value 3393 * @param b the second value 3394 * @return The maximum unbiased exponent of the values to be used for scaling 3395 * @see Math#getExponent(double) 3396 * @see Math#scalb(double, int) 3397 * @see <a href="http://www.cplusplus.com/reference/cmath/ilogb/">ilogb</a> 3398 */ 3399 private static int getScale(double a, double b) { 3400 // Only interested in the exponent and mantissa so remove the sign bit 3401 final long x = Double.doubleToRawLongBits(a) & UNSIGN_MASK; 3402 final long y = Double.doubleToRawLongBits(b) & UNSIGN_MASK; 3403 // Only interested in the maximum 3404 final long bits = Math.max(x, y); 3405 // Get the unbiased exponent 3406 int exp = ((int) (bits >>> 52)) - EXPONENT_OFFSET; 3407 3408 // No case to distinguish nan/inf 3409 // Handle sub-normal numbers 3410 if (exp == Double.MIN_EXPONENT - 1) { 3411 // Special case for zero, return as nan/inf to indicate scaling is not possible 3412 if (bits == 0) { 3413 return Double.MAX_EXPONENT + 1; 3414 } 3415 // A sub-normal number has an exponent below -1022. The amount below 3416 // is defined by the number of shifts of the most significant bit in 3417 // the mantissa that is required to get a 1 at position 53 (i.e. as 3418 // if it were a normal number with assumed leading bit) 3419 final long mantissa = bits & MANTISSA_MASK; 3420 exp -= Long.numberOfLeadingZeros(mantissa << 12); 3421 } 3422 return exp; 3423 } 3424 3425 /** 3426 * Returns the largest unbiased exponent used in the representation of the 3427 * two numbers. Special cases: 3428 * 3429 * <ul> 3430 * <li>If either argument is NaN or infinite, then the result is 3431 * {@link Double#MAX_EXPONENT} + 1. 3432 * <li>If both arguments are zero or subnormal, then the result is 3433 * {@link Double#MIN_EXPONENT} -1. 3434 * </ul> 3435 * 3436 * <p>This is used by {@link #divide(double, double, double, double)} as 3437 * a simple detection that a number may overflow if multiplied 3438 * by a value in the interval [1, 2). 3439 * 3440 * @param a the first value 3441 * @param b the second value 3442 * @return The maximum unbiased exponent of the values. 3443 * @see Math#getExponent(double) 3444 * @see #divide(double, double, double, double) 3445 */ 3446 private static int getMaxExponent(double a, double b) { 3447 // This could return: 3448 // Math.getExponent(Math.max(Math.abs(a), Math.abs(b))) 3449 // A speed test is required to determine performance. 3450 return Math.max(Math.getExponent(a), Math.getExponent(b)); 3451 } 3452 3453 /** 3454 * Checks if both x and y are in the region defined by the minimum and maximum. 3455 * 3456 * @param x x value. 3457 * @param y y value. 3458 * @param min the minimum (exclusive). 3459 * @param max the maximum (exclusive). 3460 * @return true if inside the region. 3461 */ 3462 private static boolean inRegion(double x, double y, double min, double max) { 3463 return x < max && x > min && y < max && y > min; 3464 } 3465 3466 /** 3467 * Returns {@code sqrt(x^2 + y^2)} without intermediate overflow or underflow. 3468 * 3469 * <p>Special cases: 3470 * <ul> 3471 * <li>If either argument is infinite, then the result is positive infinity. 3472 * <li>If either argument is NaN and neither argument is infinite, then the result is NaN. 3473 * </ul> 3474 * 3475 * <p>The computed result is expected to be within 1 ulp of the exact result. 3476 * 3477 * <p>This method is a replacement for {@link Math#hypot(double, double)}. There 3478 * will be differences between this method and {@code Math.hypot(double, double)} due 3479 * to the use of a different algorithm to compute the high precision sum of 3480 * {@code x^2 + y^2}. This method has been tested to have a lower maximum error from 3481 * the exact result; any differences are expected to be 1 ULP indicating a rounding 3482 * change in the sum. 3483 * 3484 * <p>JDK9 ported the hypot function to Java for bug JDK-7130085 due to the slow performance 3485 * of the method as a native function. Benchmarks of the Complex class for functions that 3486 * use hypot confirm this is slow pre-Java 9. This implementation outperforms the new faster 3487 * {@code Math.hypot(double, double)} on JDK 11 (LTS). See the Commons numbers examples JMH 3488 * module for benchmarks. Comparisons with alternative implementations indicate 3489 * performance gains are related to edge case handling and elimination of an unpredictable 3490 * branch in the computation of {@code x^2 + y^2}. 3491 * 3492 * <p>This port was adapted from the "Freely Distributable Math Library" hypot function. 3493 * This method only (and not invoked methods within) is distributed under the terms of the 3494 * original notice as shown below: 3495 * <pre> 3496 * ==================================================== 3497 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 3498 * 3499 * Developed at SunSoft, a Sun Microsystems, Inc. business. 3500 * Permission to use, copy, modify, and distribute this 3501 * software is freely granted, provided that this notice 3502 * is preserved. 3503 * ==================================================== 3504 * </pre> 3505 * 3506 * <p>Note: The fdlibm c code makes use of the language ability to read and write directly 3507 * to the upper and lower 32-bits of the 64-double. The function performs 3508 * checking on the upper 32-bits for the magnitude of the two numbers by accessing 3509 * the exponent and 20 most significant bits of the mantissa. These upper bits 3510 * are manipulated during scaling and then used to perform extended precision 3511 * computation of the sum {@code x^2 + y^2} where the high part of the number has 20-bit 3512 * precision. Manipulation of direct bits has no equivalent in Java 3513 * other than use of {@link Double#doubleToLongBits(double)} and 3514 * {@link Double#longBitsToDouble(long)}. To avoid conversion to and from long and double 3515 * representations this implementation only scales the double representation. The high 3516 * and low parts of a double for the extended precision computation are extracted 3517 * using the method of Dekker (1971) to create two 26-bit numbers. This works for sub-normal 3518 * numbers and reduces the maximum error in comparison to fdlibm hypot which does not 3519 * use a split number algorithm for sub-normal numbers. 3520 * 3521 * @param x Value x 3522 * @param y Value y 3523 * @return sqrt(x^2 + y^2) 3524 * @see Math#hypot(double, double) 3525 * @see <a href="https://www.netlib.org/fdlibm/e_hypot.c">fdlibm e_hypot.c</a> 3526 * @see <a href="https://bugs.java.com/bugdatabase/view_bug.do?bug_id=7130085">JDK-7130085 : Port fdlibm hypot to Java</a> 3527 */ 3528 private static double hypot(double x, double y) { 3529 // Differences to the fdlibm reference: 3530 // 3531 // 1. fdlibm orders the two parts using the magnitude of the upper 32-bits. 3532 // This incorrectly orders numbers which differ only in the lower 32-bits. 3533 // This invalidates hypot(x, y) = hypot(y, x) for small sub-normal numbers and a minority 3534 // of cases of normal numbers. This implementation forces the |x| >= |y| order 3535 // using the entire 63-bits of the unsigned doubles to ensure the function 3536 // is commutative. 3537 // 3538 // 2. fdlibm computed scaling by directly writing changes to the exponent bits 3539 // and maintained the high part (ha) during scaling for use in the high 3540 // precision sum x^2 + y^2. Since exponent scaling cannot be applied to sub-normals 3541 // the original version dropped the split number representation for sub-normals 3542 // and can produce maximum errors above 1 ULP for sub-normal numbers. 3543 // This version uses Dekker's method to split the number. This can be applied to 3544 // sub-normals and allows dropping the condition to check for sub-normal numbers 3545 // since all small numbers are handled with a single scaling factor. 3546 // The effect is increased precision for the majority of sub-normal cases where 3547 // the implementations compute a different result. 3548 // 3549 // 3. An alteration is done here to add an 'else if' instead of a second 3550 // 'if' statement. Thus you cannot scale down and up at the same time. 3551 // 3552 // 4. There is no use of the absolute double value. The magnitude comparison is 3553 // performed using the long bit representation. The computation x^2+y^2 is 3554 // insensitive to the sign bit. Thus use of Math.abs(double) is only in edge-case 3555 // branches. 3556 // 3557 // 5. The exponent different to ignore the smaller component has changed from 60 to 54. 3558 // 3559 // Original comments from fdlibm are in c style: /* */ 3560 // Extra comments added for reference. 3561 // 3562 // Note that the high 32-bits are compared to constants. 3563 // The lowest 20-bits are the upper bits of the 52-bit mantissa. 3564 // The next 11-bits are the biased exponent. The sign bit has been cleared. 3565 // Scaling factors are powers of two for exact scaling. 3566 // For clarity the values have been refactored to named constants. 3567 3568 // The mask is used to remove the sign bit. 3569 final long xbits = Double.doubleToRawLongBits(x) & UNSIGN_MASK; 3570 final long ybits = Double.doubleToRawLongBits(y) & UNSIGN_MASK; 3571 3572 // Order by magnitude: |a| >= |b| 3573 double a; 3574 double b; 3575 /* High word of x & y */ 3576 final int ha; 3577 final int hb; 3578 if (ybits > xbits) { 3579 a = y; 3580 b = x; 3581 ha = (int) (ybits >>> 32); 3582 hb = (int) (xbits >>> 32); 3583 } else { 3584 a = x; 3585 b = y; 3586 ha = (int) (xbits >>> 32); 3587 hb = (int) (ybits >>> 32); 3588 } 3589 3590 // Check if the smaller part is significant. 3591 // a^2 is computed in extended precision for an effective mantissa of 106-bits. 3592 // An exponent difference of 54 is where b^2 will not overlap a^2. 3593 if ((ha - hb) > EXP_54) { 3594 /* a/b > 2**54 */ 3595 // or a is Inf or NaN. 3596 // No addition of a + b for sNaN. 3597 return Math.abs(a); 3598 } 3599 3600 double rescale = 1.0; 3601 if (ha > EXP_500) { 3602 /* a > 2^500 */ 3603 if (ha >= EXP_1024) { 3604 /* Inf or NaN */ 3605 // Check b is infinite for the IEEE754 result. 3606 // No addition of a + b for sNaN. 3607 return Math.abs(b) == Double.POSITIVE_INFINITY ? 3608 Double.POSITIVE_INFINITY : 3609 Math.abs(a); 3610 } 3611 /* scale a and b by 2^-600 */ 3612 // Before scaling: a in [2^500, 2^1023]. 3613 // After scaling: a in [2^-100, 2^423]. 3614 // After scaling: b in [2^-154, 2^423]. 3615 a *= TWO_POW_NEG_600; 3616 b *= TWO_POW_NEG_600; 3617 rescale = TWO_POW_600; 3618 } else if (hb < EXP_NEG_500) { 3619 // No special handling of sub-normals. 3620 // These do not matter when we do not manipulate the exponent bits 3621 // for scaling the split representation. 3622 3623 // Intentional comparison with zero. 3624 if (b == 0) { 3625 return Math.abs(a); 3626 } 3627 3628 /* scale a and b by 2^600 */ 3629 // Effective min exponent of a sub-normal = -1022 - 52 = -1074. 3630 // Before scaling: b in [2^-1074, 2^-501]. 3631 // After scaling: b in [2^-474, 2^99]. 3632 // After scaling: a in [2^-474, 2^153]. 3633 a *= TWO_POW_600; 3634 b *= TWO_POW_600; 3635 rescale = TWO_POW_NEG_600; 3636 } 3637 3638 // High precision x^2 + y^2 3639 return Math.sqrt(x2y2(a, b)) * rescale; 3640 } 3641 3642 /** 3643 * Return {@code x^2 + y^2} with high accuracy. 3644 * 3645 * <p>It is assumed that {@code 2^500 > |x| >= |y| > 2^-500}. Thus there will be no 3646 * overflow or underflow of the result. The inputs are not assumed to be unsigned. 3647 * 3648 * <p>The computation is performed using Dekker's method for extended precision 3649 * multiplication of x and y and then summation of the extended precision squares. 3650 * 3651 * @param x Value x. 3652 * @param y Value y 3653 * @return x^2 + y^2 3654 * @see <a href="https://doi.org/10.1007/BF01397083"> 3655 * Dekker (1971) A floating-point technique for extending the available precision</a> 3656 */ 3657 private static double x2y2(double x, double y) { 3658 // Note: 3659 // This method is different from the high-accuracy summation used in fdlibm for hypot. 3660 // The summation could be any valid computation of x^2+y^2. However since this follows 3661 // the re-scaling logic in hypot(x, y) the use of high precision has relatively 3662 // less performance overhead than if used without scaling. 3663 // The Dekker algorithm is branchless for better performance 3664 // than the fdlibm method with a maximum ULP error of approximately 0.86. 3665 // 3666 // See NUMBERS-143 for analysis. 3667 3668 // Do a Dekker summation of double length products x*x and y*y 3669 // (10 multiply and 20 additions). 3670 final double xx = x * x; 3671 final double yy = y * y; 3672 // Compute the round-off from the products. 3673 // With FMA hardware support in JDK 9+ this can be replaced with the much faster: 3674 // xxLow = Math.fma(x, x, -xx) 3675 // yyLow = Math.fma(y, y, -yy) 3676 // Dekker mul12 3677 final double xHigh = splitHigh(x); 3678 final double xLow = x - xHigh; 3679 final double xxLow = squareLow(xLow, xHigh, xx); 3680 // Dekker mul12 3681 final double yHigh = splitHigh(y); 3682 final double yLow = y - yHigh; 3683 final double yyLow = squareLow(yLow, yHigh, yy); 3684 // Dekker add2 3685 final double r = xx + yy; 3686 // Note: The order is important. Assume xx > yy and drop Dekker's conditional 3687 // check for which is the greater magnitude. 3688 // s = xx - r + yy + yyLow + xxLow 3689 // z = r + s 3690 // zz = r - z + s 3691 // Here we compute z inline and ignore computing the round-off zz. 3692 // Note: The round-off could be used with Dekker's sqrt2 method. 3693 // That adds 7 multiply, 1 division and 19 additions doubling the cost 3694 // and reducing error to < 0.5 ulp for the final sqrt. 3695 return xx - r + yy + yyLow + xxLow + r; 3696 } 3697}