001/* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017package org.apache.commons.numbers.gamma; 018 019/** 020 * <a href="http://en.wikipedia.org/wiki/Digamma_function">Digamma function</a>. 021 * <p> 022 * It is defined as the logarithmic derivative of the \( \Gamma \) 023 * ({@link Gamma}) function: 024 * \( \frac{d}{dx}(\ln \Gamma(x)) = \frac{\Gamma^\prime(x)}{\Gamma(x)} \). 025 * </p> 026 * 027 * @see Gamma 028 */ 029public final class Digamma { 030 /** <a href="http://en.wikipedia.org/wiki/Euler-Mascheroni_constant">Euler-Mascheroni constant</a>. */ 031 private static final double GAMMA = 0.577215664901532860606512090082; 032 033 /** C limit. */ 034 private static final double C_LIMIT = 49; 035 /** S limit. */ 036 private static final double S_LIMIT = 1e-5; 037 /** Fraction. */ 038 private static final double F_M1_12 = -1d / 12; 039 /** Fraction. */ 040 private static final double F_1_120 = 1d / 120; 041 /** Fraction. */ 042 private static final double F_M1_252 = -1d / 252; 043 044 /** Private constructor. */ 045 private Digamma() { 046 // intentionally empty. 047 } 048 049 /** 050 * Computes the digamma function. 051 * 052 * This is an independently written implementation of the algorithm described in 053 * <a href="http://www.uv.es/~bernardo/1976AppStatist.pdf">Jose Bernardo, 054 * Algorithm AS 103: Psi (Digamma) Function, Applied Statistics, 1976</a>. 055 * A <a href="https://en.wikipedia.org/wiki/Digamma_function#Reflection_formula"> 056 * reflection formula</a> is incorporated to improve performance on negative values. 057 * 058 * Some of the constants have been changed to increase accuracy at the moderate 059 * expense of run-time. The result should be accurate to within {@code 1e-8}. 060 * relative tolerance for {@code 0 < x < 1e-5} and within {@code 1e-8} absolute 061 * tolerance otherwise. 062 * 063 * @param x Argument. 064 * @return digamma(x) to within {@code 1e-8} relative or absolute error whichever 065 * is larger. 066 */ 067 public static double value(double x) { 068 if (!Double.isFinite(x)) { 069 return x; 070 } 071 072 double digamma = 0; 073 if (x < 0) { 074 // Use reflection formula to fall back into positive values. 075 digamma -= Math.PI / Math.tan(Math.PI * x); 076 x = 1 - x; 077 } 078 079 if (x > 0 && x <= S_LIMIT) { 080 // Use method 5 from Bernardo AS103, accurate to O(x). 081 return digamma - GAMMA - 1 / x; 082 } 083 084 while (x < C_LIMIT) { 085 digamma -= 1 / x; 086 x += 1; 087 } 088 089 // Use method 4, accurate to O(1/x^8) 090 final double inv = 1 / (x * x); 091 // 1 1 1 1 092 // log(x) - --- - ------ + ------- - ------- 093 // 2 x 12 x^2 120 x^4 252 x^6 094 digamma += Math.log(x) - 0.5 / x + inv * (F_M1_12 + inv * (F_1_120 + F_M1_252 * inv)); 095 096 return digamma; 097 } 098}