001/* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017package org.apache.commons.numbers.quaternion; 018 019import java.util.function.DoubleFunction; 020 021/** 022 * Perform spherical linear interpolation (<a href="https://en.wikipedia.org/wiki/Slerp">Slerp</a>). 023 * 024 * The <em>Slerp</em> algorithm is designed to interpolate smoothly between 025 * two rotations/orientations, producing a constant-speed motion along an arc. 026 * The original purpose of this algorithm was to animate 3D rotations. All output 027 * quaternions are in positive polar form, meaning a unit quaternion with a positive 028 * scalar component. 029 */ 030public class Slerp implements DoubleFunction<Quaternion> { 031 /** 032 * Threshold max value for the dot product. 033 * If the quaternion dot product is greater than this value (i.e. the 034 * quaternions are very close to each other), then the quaternions are 035 * linearly interpolated instead of spherically interpolated. 036 */ 037 private static final double MAX_DOT_THRESHOLD = 0.9995; 038 /** Start of the interpolation. */ 039 private final Quaternion start; 040 /** End of the interpolation. */ 041 private final Quaternion end; 042 /** Linear or spherical interpolation algorithm. */ 043 private final DoubleFunction<Quaternion> algo; 044 045 /** 046 * Create an instance. 047 * 048 * @param start Start of the interpolation. 049 * @param end End of the interpolation. 050 */ 051 public Slerp(Quaternion start, 052 Quaternion end) { 053 this.start = start.positivePolarForm(); 054 055 final Quaternion e = end.positivePolarForm(); 056 double dot = this.start.dot(e); 057 058 // If the dot product is negative, then the interpolation won't follow the shortest 059 // angular path between the two quaterions. In this case, invert the end quaternion 060 // to produce an equivalent rotation that will give us the path we want. 061 if (dot < 0) { 062 dot = -dot; 063 this.end = e.negate(); 064 } else { 065 this.end = e; 066 } 067 068 algo = dot > MAX_DOT_THRESHOLD ? 069 new Linear() : 070 new Spherical(dot); 071 } 072 073 /** 074 * Performs the interpolation. 075 * The rotation returned by this method is controlled by the interpolation parameter, {@code t}. 076 * All other values are interpolated (or extrapolated if {@code t} is outside of the 077 * {@code [0, 1]} range). The returned quaternion is in positive polar form, meaning that it 078 * is a unit quaternion with a positive scalar component. 079 * 080 * @param t Interpolation control parameter. 081 * When {@code t = 0}, a rotation equal to the start instance is returned. 082 * When {@code t = 1}, a rotation equal to the end instance is returned. 083 * @return an interpolated quaternion in positive polar form. 084 */ 085 @Override 086 public Quaternion apply(double t) { 087 // Handle no-op cases. 088 if (t == 0) { 089 return start; 090 } else if (t == 1) { 091 // Call to "positivePolarForm()" is required because "end" might 092 // not be in positive polar form. 093 return end.positivePolarForm(); 094 } 095 096 return algo.apply(t); 097 } 098 099 /** 100 * Linear interpolation, used when the quaternions are too closely aligned. 101 */ 102 private final class Linear implements DoubleFunction<Quaternion> { 103 /** Package-private constructor. */ 104 Linear() {} 105 106 /** {@inheritDoc} */ 107 @Override 108 public Quaternion apply(double t) { 109 final double f = 1 - t; 110 return Quaternion.of(f * start.getW() + t * end.getW(), 111 f * start.getX() + t * end.getX(), 112 f * start.getY() + t * end.getY(), 113 f * start.getZ() + t * end.getZ()).positivePolarForm(); 114 } 115 } 116 117 /** 118 * Spherical interpolation, used when the quaternions are too closely aligned. 119 * When we may end up dividing by zero (cf. 1/sin(theta) term below). 120 * {@link Linear} interpolation must be used. 121 */ 122 private final class Spherical implements DoubleFunction<Quaternion> { 123 /** Angle of rotation. */ 124 private final double theta; 125 /** Sine of {@link #theta}. */ 126 private final double sinTheta; 127 128 /** 129 * @param dot Dot product of the start and end quaternions. 130 */ 131 Spherical(double dot) { 132 theta = Math.acos(dot); 133 sinTheta = Math.sin(theta); 134 } 135 136 /** {@inheritDoc} */ 137 @Override 138 public Quaternion apply(double t) { 139 final double f1 = Math.sin((1 - t) * theta) / sinTheta; 140 final double f2 = Math.sin(t * theta) / sinTheta; 141 142 return Quaternion.of(f1 * start.getW() + f2 * end.getW(), 143 f1 * start.getX() + f2 * end.getX(), 144 f1 * start.getY() + f2 * end.getY(), 145 f1 * start.getZ() + f2 * end.getZ()).positivePolarForm(); 146 } 147 } 148}