Digamma.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.numbers.gamma;
- /**
- * <a href="http://en.wikipedia.org/wiki/Digamma_function">Digamma function</a>.
- * <p>
- * It is defined as the logarithmic derivative of the \( \Gamma \)
- * ({@link Gamma}) function:
- * \( \frac{d}{dx}(\ln \Gamma(x)) = \frac{\Gamma^\prime(x)}{\Gamma(x)} \).
- * </p>
- *
- * @see Gamma
- */
- public final class Digamma {
- /** <a href="http://en.wikipedia.org/wiki/Euler-Mascheroni_constant">Euler-Mascheroni constant</a>. */
- private static final double GAMMA = 0.577215664901532860606512090082;
- /** C limit. */
- private static final double C_LIMIT = 49;
- /** S limit. */
- private static final double S_LIMIT = 1e-5;
- /** Fraction. */
- private static final double F_M1_12 = -1d / 12;
- /** Fraction. */
- private static final double F_1_120 = 1d / 120;
- /** Fraction. */
- private static final double F_M1_252 = -1d / 252;
- /** Private constructor. */
- private Digamma() {
- // intentionally empty.
- }
- /**
- * Computes the digamma function.
- *
- * This is an independently written implementation of the algorithm described in
- * <a href="http://www.uv.es/~bernardo/1976AppStatist.pdf">Jose Bernardo,
- * Algorithm AS 103: Psi (Digamma) Function, Applied Statistics, 1976</a>.
- * A <a href="https://en.wikipedia.org/wiki/Digamma_function#Reflection_formula">
- * reflection formula</a> is incorporated to improve performance on negative values.
- *
- * Some of the constants have been changed to increase accuracy at the moderate
- * expense of run-time. The result should be accurate to within {@code 1e-8}.
- * relative tolerance for {@code 0 < x < 1e-5} and within {@code 1e-8} absolute
- * tolerance otherwise.
- *
- * @param x Argument.
- * @return digamma(x) to within {@code 1e-8} relative or absolute error whichever
- * is larger.
- */
- public static double value(double x) {
- if (!Double.isFinite(x)) {
- return x;
- }
- double digamma = 0;
- if (x < 0) {
- // Use reflection formula to fall back into positive values.
- digamma -= Math.PI / Math.tan(Math.PI * x);
- x = 1 - x;
- }
- if (x > 0 && x <= S_LIMIT) {
- // Use method 5 from Bernardo AS103, accurate to O(x).
- return digamma - GAMMA - 1 / x;
- }
- while (x < C_LIMIT) {
- digamma -= 1 / x;
- x += 1;
- }
- // Use method 4, accurate to O(1/x^8)
- final double inv = 1 / (x * x);
- // 1 1 1 1
- // log(x) - --- - ------ + ------- - -------
- // 2 x 12 x^2 120 x^4 252 x^6
- digamma += Math.log(x) - 0.5 / x + inv * (F_M1_12 + inv * (F_1_120 + F_M1_252 * inv));
- return digamma;
- }
- }