RegularizedBeta.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.numbers.gamma;
- /**
- * <a href="https://mathworld.wolfram.com/RegularizedBetaFunction.html">
- * Regularized Beta function</a>.
- *
- * <p>\[ I_x(a,b) = \frac{1}{B(a, b)} \int_0^x t^{a-1}\,(1-t)^{b-1}\,dt \]
- *
- * <p>where \( B(a, b) \) is the beta function.
- *
- * <p>This code has been adapted from the <a href="https://www.boost.org/">Boost</a>
- * {@code c++} implementation {@code <boost/math/special_functions/beta.hpp>}.
- *
- * @see
- * <a href="https://www.boost.org/doc/libs/1_77_0/libs/math/doc/html/math_toolkit/sf_beta/ibeta_function.html">
- * Boost C++ Incomplete Beta functions</a>
- */
- public final class RegularizedBeta {
- /** Private constructor. */
- private RegularizedBeta() {
- // intentionally empty.
- }
- /**
- * Computes the value of the
- * <a href="https://mathworld.wolfram.com/RegularizedBetaFunction.html">
- * regularized beta function</a> I(x, a, b).
- *
- * <p>\[ I_x(a,b) = \frac{1}{B(a, b)} \int_0^x t^{a-1}\,(1-t)^{b-1}\,dt \]
- *
- * <p>where \( B(a, b) \) is the beta function.
- *
- * @param x Value.
- * @param a Parameter {@code a}.
- * @param b Parameter {@code b}.
- * @return the regularized beta function \( I_x(a, b) \).
- * @throws ArithmeticException if the series evaluation fails to converge.
- */
- public static double value(double x,
- double a,
- double b) {
- return BoostBeta.ibeta(a, b, x);
- }
- /**
- * Computes the value of the
- * <a href="https://mathworld.wolfram.com/RegularizedBetaFunction.html">
- * regularized beta function</a> I(x, a, b).
- *
- * <p>\[ I_x(a,b) = \frac{1}{B(a, b)} \int_0^x t^{a-1}\,(1-t)^{b-1}\,dt \]
- *
- * <p>where \( B(a, b) \) is the beta function.
- *
- * @param x the value.
- * @param a Parameter {@code a}.
- * @param b Parameter {@code b}.
- * @param epsilon Tolerance in series evaluation.
- * @param maxIterations Maximum number of iterations in series evaluation.
- * @return the regularized beta function \( I_x(a, b) \).
- * @throws ArithmeticException if the series evaluation fails to converge.
- */
- public static double value(double x,
- final double a,
- final double b,
- double epsilon,
- int maxIterations) {
- return BoostBeta.ibeta(a, b, x, new Policy(epsilon, maxIterations));
- }
- /**
- * Computes the complement of the
- * <a href="https://mathworld.wolfram.com/RegularizedBetaFunction.html">
- * regularized beta function</a> I(x, a, b).
- *
- * <p>\[ 1 - I_x(a,b) = I_{1-x}(b, a) \]
- *
- * @param x Value.
- * @param a Parameter {@code a}.
- * @param b Parameter {@code b}.
- * @return the complement of the regularized beta function \( 1 - I_x(a, b) \).
- * @throws ArithmeticException if the series evaluation fails to converge.
- * @since 1.1
- */
- public static double complement(double x,
- double a,
- double b) {
- return BoostBeta.ibetac(a, b, x);
- }
- /**
- * Computes the complement of the
- * <a href="https://mathworld.wolfram.com/RegularizedBetaFunction.html">
- * regularized beta function</a> I(x, a, b).
- *
- * <p>\[ 1 - I_x(a,b) = I_{1-x}(b, a) \]
- *
- * @param x the value.
- * @param a Parameter {@code a}.
- * @param b Parameter {@code b}.
- * @param epsilon Tolerance in series evaluation.
- * @param maxIterations Maximum number of iterations in series evaluation.
- * @return the complement of the regularized beta function \( 1 - I_x(a, b) \).
- * @throws ArithmeticException if the series evaluation fails to converge.
- * @since 1.1
- */
- public static double complement(double x,
- final double a,
- final double b,
- double epsilon,
- int maxIterations) {
- return BoostBeta.ibetac(a, b, x, new Policy(epsilon, maxIterations));
- }
- /**
- * Computes the derivative of the
- * <a href="https://mathworld.wolfram.com/RegularizedBetaFunction.html">
- * regularized beta function</a> I(x, a, b).
- *
- * <p>\[ \frac{\delta}{\delta x} I_x(a,b) = \frac{(1-x)^{b-1} x^{a-1}}{B(a, b)} \]
- *
- * <p>where \( B(a, b) \) is the beta function.
- *
- * <p>This function has uses in some statistical distributions.
- *
- * @param x Value.
- * @param a Parameter {@code a}.
- * @param b Parameter {@code b}.
- * @return the derivative of the regularized beta function \( I_x(a, b) \).
- * @throws ArithmeticException if the series evaluation fails to converge.
- * @since 1.1
- */
- public static double derivative(double x,
- double a,
- double b) {
- return BoostBeta.ibetaDerivative(a, b, x);
- }
- }