RegularizedGamma.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.numbers.gamma;
- /**
- * <a href="https://mathworld.wolfram.com/RegularizedGammaFunction.html">
- * Regularized Gamma functions</a>.
- *
- * <p>By definition, the lower and upper regularized gamma functions satisfy:
- *
- * <p>\[ 1 = P(a, x) + Q(a, x) \]
- *
- * <p>This code has been adapted from the <a href="https://www.boost.org/">Boost</a>
- * {@code c++} implementation {@code <boost/math/special_functions/gamma.hpp>}.
- *
- * @see
- * <a href="https://www.boost.org/doc/libs/1_77_0/libs/math/doc/html/math_toolkit/sf_gamma/igamma.html">
- * Boost C++ Incomplete Gamma functions</a>
- */
- public final class RegularizedGamma {
- /** Private constructor. */
- private RegularizedGamma() {
- // intentionally empty.
- }
- /**
- * <a href="http://mathworld.wolfram.com/RegularizedGammaFunction.html">
- * Lower regularized Gamma function</a> \( P(a, x) \).
- *
- * <p>\[ P(a,x) = 1 - Q(a,x) = \frac{\gamma(a,x)}{\Gamma(a)} = \frac{1}{\Gamma(a)} \int_0^x t^{a-1}\,e^{-t}\,dt \]
- */
- public static final class P {
- /** Prevent instantiation. */
- private P() {}
- /**
- * Computes the lower regularized gamma function \( P(a, x) \).
- *
- * @param a Argument.
- * @param x Argument.
- * @return \( P(a, x) \).
- * @throws ArithmeticException if the continued fraction fails to converge.
- */
- public static double value(double a,
- double x) {
- return BoostGamma.gammaP(a, x);
- }
- /**
- * Computes the lower regularized gamma function \( P(a, x) \).
- *
- * @param a Argument.
- * @param x Argument.
- * @param epsilon Tolerance in series evaluation.
- * @param maxIterations Maximum number of iterations in series evaluation.
- * @return \( P(a, x) \).
- * @throws ArithmeticException if the series evaluation fails to converge.
- */
- public static double value(double a,
- double x,
- double epsilon,
- int maxIterations) {
- return BoostGamma.gammaP(a, x, new Policy(epsilon, maxIterations));
- }
- /**
- * Computes the derivative of the lower regularized gamma function \( P(a, x) \).
- *
- * <p>\[ \frac{\delta}{\delta x} P(a,x) = \frac{e^{-x} x^{a-1}}{\Gamma(a)} \]
- *
- * <p>This function has uses in some statistical distributions.
- *
- * @param a Argument.
- * @param x Argument.
- * @return derivative of \( P(a,x) \) with respect to x.
- * @since 1.1
- */
- public static double derivative(double a,
- double x) {
- return BoostGamma.gammaPDerivative(a, x);
- }
- }
- /**
- * <a href="http://mathworld.wolfram.com/RegularizedGammaFunction.html">
- * Upper regularized Gamma function</a> \( Q(a, x) \).
- *
- * <p>\[ Q(a,x) = 1 - P(a,x) = \frac{\Gamma(a,x)}{\Gamma(a)} = \frac{1}{\Gamma(a)} \int_x^{\infty} t^{a-1}\,e^{-t}\,dt \]
- */
- public static final class Q {
- /** Prevent instantiation. */
- private Q() {}
- /**
- * Computes the upper regularized gamma function \( Q(a, x) \).
- *
- * @param a Argument.
- * @param x Argument.
- * @return \( Q(a, x) \).
- * @throws ArithmeticException if the series evaluation fails to converge.
- */
- public static double value(double a,
- double x) {
- return BoostGamma.gammaQ(a, x);
- }
- /**
- * Computes the upper regularized gamma function \( Q(a, x) \).
- *
- * @param a Argument.
- * @param x Argument.
- * @param epsilon Tolerance in series evaluation.
- * @param maxIterations Maximum number of iterations in series evaluation.
- * @return \( Q(a, x) \).
- * @throws ArithmeticException if the series evaluation fails to converge.
- */
- public static double value(final double a,
- double x,
- double epsilon,
- int maxIterations) {
- return BoostGamma.gammaQ(a, x, new Policy(epsilon, maxIterations));
- }
- /**
- * Computes the derivative of the upper regularized gamma function \( Q(a, x) \).
- *
- * <p>\[ \frac{\delta}{\delta x} Q(a,x) = -\frac{e^{-x} x^{a-1}}{\Gamma(a)} \]
- *
- * <p>This function has uses in some statistical distributions.
- *
- * @param a Argument.
- * @param x Argument.
- * @return derivative of \( Q(a,x) \) with respect to x.
- * @since 1.1
- */
- public static double derivative(double a,
- double x) {
- return -BoostGamma.gammaPDerivative(a, x);
- }
- }
- }