BrentSolver.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.numbers.rootfinder;
- import java.util.function.DoubleUnaryOperator;
- /**
- * This class implements the <a href="http://mathworld.wolfram.com/BrentsMethod.html">
- * Brent algorithm</a> for finding zeros of real univariate functions.
- * The function should be continuous but not necessarily smooth.
- * The {@code solve} method returns a zero {@code x} of the function {@code f}
- * in the given interval {@code [a, b]} to within a tolerance
- * {@code 2 eps abs(x) + t} where {@code eps} is the relative accuracy and
- * {@code t} is the absolute accuracy.
- * <p>The given interval must bracket the root.</p>
- * <p>
- * The reference implementation is given in chapter 4 of
- * <blockquote>
- * <b>Algorithms for Minimization Without Derivatives</b>,
- * <em>Richard P. Brent</em>,
- * Dover, 2002
- * </blockquote>
- */
- public class BrentSolver {
- /** Relative accuracy. */
- private final double relativeAccuracy;
- /** Absolute accuracy. */
- private final double absoluteAccuracy;
- /** Function accuracy. */
- private final double functionValueAccuracy;
- /**
- * Construct a solver.
- *
- * @param relativeAccuracy Relative accuracy.
- * @param absoluteAccuracy Absolute accuracy.
- * @param functionValueAccuracy Function value accuracy.
- */
- public BrentSolver(double relativeAccuracy,
- double absoluteAccuracy,
- double functionValueAccuracy) {
- this.relativeAccuracy = relativeAccuracy;
- this.absoluteAccuracy = absoluteAccuracy;
- this.functionValueAccuracy = functionValueAccuracy;
- }
- /**
- * Search the function's zero within the given interval.
- *
- * @param func Function to solve.
- * @param min Lower bound.
- * @param max Upper bound.
- * @return the root.
- * @throws IllegalArgumentException if {@code min > max}.
- * @throws IllegalArgumentException if the given interval does
- * not bracket the root.
- */
- public double findRoot(DoubleUnaryOperator func,
- double min,
- double max) {
- // Avoid overflow computing the initial value: 0.5 * (min + max)
- // Note: This sum is invalid if min == max == Double.MIN_VALUE
- // so detect this edge case. It will raise a bracketing exception
- // if min is not the root within the configured function accuracy;
- // otherwise min is returned.
- final double initial = min == max ? min : 0.5 * min + 0.5 * max;
- return findRoot(func, min, initial, max);
- }
- /**
- * Search the function's zero within the given interval,
- * starting from the given estimate.
- *
- * @param func Function to solve.
- * @param min Lower bound.
- * @param initial Initial guess.
- * @param max Upper bound.
- * @return the root.
- * @throws IllegalArgumentException if {@code min > max} or
- * {@code initial} is not in the {@code [min, max]} interval.
- * @throws IllegalArgumentException if the given interval does
- * not bracket the root.
- */
- public double findRoot(DoubleUnaryOperator func,
- double min,
- double initial,
- double max) {
- if (min > max) {
- throw new SolverException(SolverException.TOO_LARGE, min, max);
- }
- if (initial < min ||
- initial > max) {
- throw new SolverException(SolverException.OUT_OF_RANGE, initial, min, max);
- }
- // Return the initial guess if it is good enough.
- final double yInitial = func.applyAsDouble(initial);
- if (Math.abs(yInitial) <= functionValueAccuracy) {
- return initial;
- }
- // Return the first endpoint if it is good enough.
- final double yMin = func.applyAsDouble(min);
- if (Math.abs(yMin) <= functionValueAccuracy) {
- return min;
- }
- // Reduce interval if min and initial bracket the root.
- if (Double.compare(yInitial * yMin, 0.0) < 0) {
- return brent(func, min, initial, yMin, yInitial);
- }
- // Return the second endpoint if it is good enough.
- final double yMax = func.applyAsDouble(max);
- if (Math.abs(yMax) <= functionValueAccuracy) {
- return max;
- }
- // Reduce interval if initial and max bracket the root.
- if (Double.compare(yInitial * yMax, 0.0) < 0) {
- return brent(func, initial, max, yInitial, yMax);
- }
- throw new SolverException(SolverException.BRACKETING, min, yMin, max, yMax);
- }
- /**
- * Search for a zero inside the provided interval.
- * This implementation is based on the algorithm described at page 58 of
- * the book
- * <blockquote>
- * <b>Algorithms for Minimization Without Derivatives</b>,
- * <i>Richard P. Brent</i>,
- * Dover 0-486-41998-3
- * </blockquote>
- *
- * @param func Function to solve.
- * @param lo Lower bound of the search interval.
- * @param hi Higher bound of the search interval.
- * @param fLo Function value at the lower bound of the search interval.
- * @param fHi Function value at the higher bound of the search interval.
- * @return the value where the function is zero.
- */
- private double brent(DoubleUnaryOperator func,
- double lo, double hi,
- double fLo, double fHi) {
- double a = lo;
- double fa = fLo;
- double b = hi;
- double fb = fHi;
- double c = a;
- double fc = fa;
- double d = b - a;
- double e = d;
- final double t = absoluteAccuracy;
- final double eps = relativeAccuracy;
- while (true) {
- if (Math.abs(fc) < Math.abs(fb)) {
- a = b;
- b = c;
- c = a;
- fa = fb;
- fb = fc;
- fc = fa;
- }
- final double tol = 2 * eps * Math.abs(b) + t;
- final double m = 0.5 * (c - b);
- if (Math.abs(m) <= tol ||
- equalsZero(fb)) {
- return b;
- }
- if (Math.abs(e) < tol ||
- Math.abs(fa) <= Math.abs(fb)) {
- // Force bisection.
- d = m;
- e = d;
- } else {
- final double s = fb / fa;
- double p;
- double q;
- // The equality test (a == c) is intentional,
- // it is part of the original Brent's method and
- // it should NOT be replaced by proximity test.
- if (a == c) {
- // Linear interpolation.
- p = 2 * m * s;
- q = 1 - s;
- } else {
- // Inverse quadratic interpolation.
- q = fa / fc;
- final double r = fb / fc;
- p = s * (2 * m * q * (q - r) - (b - a) * (r - 1));
- q = (q - 1) * (r - 1) * (s - 1);
- }
- if (p > 0) {
- q = -q;
- } else {
- p = -p;
- }
- if (p >= 1.5 * m * q - Math.abs(tol * q) ||
- p >= Math.abs(0.5 * e * q)) {
- // Inverse quadratic interpolation gives a value
- // in the wrong direction, or progress is slow.
- // Fall back to bisection.
- d = m;
- e = d;
- } else {
- e = d;
- d = p / q;
- }
- }
- a = b;
- fa = fb;
- if (Math.abs(d) > tol) {
- b += d;
- } else if (m > 0) {
- b += tol;
- } else {
- b -= tol;
- }
- fb = func.applyAsDouble(b);
- if ((fb > 0 && fc > 0) ||
- (fb <= 0 && fc <= 0)) {
- c = a;
- fc = fa;
- d = b - a;
- e = d;
- }
- }
- }
- /**
- * Return true if the value is within 1 ULP of zero.
- *
- * @param value Value
- * @return true if zero within a 1 ULP tolerance
- */
- private static boolean equalsZero(double value) {
- return Math.abs(value) <= Double.MIN_VALUE;
- }
- }