001/* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017package org.apache.commons.numbers.fraction; 018 019import java.io.Serializable; 020import org.apache.commons.numbers.core.ArithmeticUtils; 021import org.apache.commons.numbers.core.NativeOperators; 022 023/** 024 * Representation of a rational number. 025 * 026 * <p>The number is expressed as the quotient {@code p/q} of two 32-bit integers, 027 * a numerator {@code p} and a non-zero denominator {@code q}. 028 * 029 * <p>This class is immutable. 030 * 031 * <a href="https://en.wikipedia.org/wiki/Rational_number">Rational number</a> 032 */ 033public final class Fraction 034 extends Number 035 implements Comparable<Fraction>, 036 NativeOperators<Fraction>, 037 Serializable { 038 /** A fraction representing "0". */ 039 public static final Fraction ZERO = new Fraction(0); 040 041 /** A fraction representing "1". */ 042 public static final Fraction ONE = new Fraction(1); 043 044 /** Serializable version identifier. */ 045 private static final long serialVersionUID = 20190701L; 046 047 /** The default epsilon used for convergence. */ 048 private static final double DEFAULT_EPSILON = 1e-5; 049 050 /** The default iterations used for convergence. */ 051 private static final int DEFAULT_MAX_ITERATIONS = 100; 052 053 /** Message for non-finite input double argument to factory constructors. */ 054 private static final String NOT_FINITE = "Not finite: "; 055 056 /** The overflow limit for conversion from a double (2^31). */ 057 private static final long OVERFLOW = 1L << 31; 058 059 /** The numerator of this fraction reduced to lowest terms. */ 060 private final int numerator; 061 062 /** The denominator of this fraction reduced to lowest terms. */ 063 private final int denominator; 064 065 /** 066 * Private constructor: Instances are created using factory methods. 067 * 068 * <p>This constructor should only be invoked when the fraction is known 069 * to be non-zero; otherwise use {@link #ZERO}. This avoids creating 070 * the zero representation {@code 0 / -1}. 071 * 072 * @param num Numerator. 073 * @param den Denominator. 074 * @throws ArithmeticException if the denominator is {@code zero}. 075 */ 076 private Fraction(int num, int den) { 077 if (den == 0) { 078 throw new FractionException(FractionException.ERROR_ZERO_DENOMINATOR); 079 } 080 081 if (num == den) { 082 numerator = 1; 083 denominator = 1; 084 } else { 085 // Reduce numerator (p) and denominator (q) by greatest common divisor. 086 int p; 087 int q; 088 089 // If num and den are both 2^-31, or if one is 0 and the other is 2^-31, 090 // the calculation of the gcd below will fail. Ensure that this does not 091 // happen by dividing both by 2 in case both are even. 092 if (((num | den) & 1) == 0) { 093 p = num >> 1; 094 q = den >> 1; 095 } else { 096 p = num; 097 q = den; 098 } 099 100 // Will not throw. 101 // Cannot return 0 as gcd(0, 0) has been eliminated. 102 final int d = ArithmeticUtils.gcd(p, q); 103 numerator = p / d; 104 denominator = q / d; 105 } 106 } 107 108 /** 109 * Private constructor: Instances are created using factory methods. 110 * 111 * <p>This sets the denominator to 1. 112 * 113 * @param num Numerator. 114 */ 115 private Fraction(int num) { 116 numerator = num; 117 denominator = 1; 118 } 119 120 /** 121 * Create a fraction given the double value and either the maximum error 122 * allowed or the maximum number of denominator digits. 123 * 124 * <p> 125 * NOTE: This constructor is called with: 126 * <ul> 127 * <li>EITHER a valid epsilon value and the maxDenominator set to 128 * Integer.MAX_VALUE (that way the maxDenominator has no effect) 129 * <li>OR a valid maxDenominator value and the epsilon value set to 130 * zero (that way epsilon only has effect if there is an exact 131 * match before the maxDenominator value is reached). 132 * </ul> 133 * <p> 134 * It has been done this way so that the same code can be reused for 135 * both scenarios. However this could be confusing to users if it 136 * were part of the public API and this method should therefore remain 137 * PRIVATE. 138 * </p> 139 * 140 * <p> 141 * See JIRA issue ticket MATH-181 for more details: 142 * https://issues.apache.org/jira/browse/MATH-181 143 * </p> 144 * 145 * <p> 146 * Warning: This conversion assumes the value is not zero. 147 * </p> 148 * 149 * @param value Value to convert to a fraction. Must not be zero. 150 * @param epsilon Maximum error allowed. 151 * The resulting fraction is within {@code epsilon} of {@code value}, 152 * in absolute terms. 153 * @param maxDenominator Maximum denominator value allowed. 154 * @param maxIterations Maximum number of convergents. 155 * @throws IllegalArgumentException if the given {@code value} is NaN or infinite. 156 * @throws ArithmeticException if the continued fraction failed to converge. 157 */ 158 private Fraction(final double value, 159 final double epsilon, 160 final int maxDenominator, 161 final int maxIterations) { 162 if (!Double.isFinite(value)) { 163 throw new IllegalArgumentException(NOT_FINITE + value); 164 } 165 166 // Remove sign, this is restored at the end. 167 // (Assumes the value is not zero and thus signum(value) is not zero). 168 final double absValue = Math.abs(value); 169 double r0 = absValue; 170 long a0 = (long) Math.floor(r0); 171 if (a0 > OVERFLOW) { 172 throw new FractionException(FractionException.ERROR_CONVERSION_OVERFLOW, value, a0, 1); 173 } 174 175 // check for (almost) integer arguments, which should not go to iterations. 176 if (r0 - a0 <= epsilon) { 177 int num = (int) a0; 178 int den = 1; 179 // Restore the sign. 180 if (Math.signum(num) != Math.signum(value)) { 181 if (num == Integer.MIN_VALUE) { 182 den = -den; 183 } else { 184 num = -num; 185 } 186 } 187 this.numerator = num; 188 this.denominator = den; 189 return; 190 } 191 192 // Support 2^31 as maximum denominator. 193 // This is negative as an integer so convert to long. 194 final long maxDen = Math.abs((long) maxDenominator); 195 196 long p0 = 1; 197 long q0 = 0; 198 long p1 = a0; 199 long q1 = 1; 200 201 long p2; 202 long q2; 203 204 int n = 0; 205 boolean stop = false; 206 do { 207 ++n; 208 final double r1 = 1.0 / (r0 - a0); 209 final long a1 = (long) Math.floor(r1); 210 p2 = (a1 * p1) + p0; 211 q2 = (a1 * q1) + q0; 212 213 if (Long.compareUnsigned(p2, OVERFLOW) > 0 || 214 Long.compareUnsigned(q2, OVERFLOW) > 0) { 215 // In maxDenominator mode, fall-back to the previous valid fraction. 216 if (epsilon == 0.0) { 217 p2 = p1; 218 q2 = q1; 219 break; 220 } 221 throw new FractionException(FractionException.ERROR_CONVERSION_OVERFLOW, value, p2, q2); 222 } 223 224 final double convergent = (double) p2 / (double) q2; 225 if (n < maxIterations && 226 Math.abs(convergent - absValue) > epsilon && 227 q2 < maxDen) { 228 p0 = p1; 229 p1 = p2; 230 q0 = q1; 231 q1 = q2; 232 a0 = a1; 233 r0 = r1; 234 } else { 235 stop = true; 236 } 237 } while (!stop); 238 239 if (n >= maxIterations) { 240 throw new FractionException(FractionException.ERROR_CONVERSION, value, maxIterations); 241 } 242 243 // Use p2 / q2 or p1 / q1 if q2 has grown too large in maxDenominator mode 244 // Note: Conversion of long 2^31 to an integer will create a negative. This could 245 // be either the numerator or denominator. This is handled by restoring the sign. 246 int num; 247 int den; 248 if (q2 <= maxDen) { 249 num = (int) p2; 250 den = (int) q2; 251 } else { 252 num = (int) p1; 253 den = (int) q1; 254 } 255 256 // Restore the sign. 257 if (Math.signum(num) * Math.signum(den) != Math.signum(value)) { 258 if (num == Integer.MIN_VALUE) { 259 den = -den; 260 } else { 261 num = -num; 262 } 263 } 264 265 this.numerator = num; 266 this.denominator = den; 267 } 268 269 /** 270 * Create a fraction given the double value. 271 * 272 * @param value Value to convert to a fraction. 273 * @throws IllegalArgumentException if the given {@code value} is NaN or infinite. 274 * @throws ArithmeticException if the continued fraction failed to converge. 275 * @return a new instance. 276 */ 277 public static Fraction from(final double value) { 278 return from(value, DEFAULT_EPSILON, DEFAULT_MAX_ITERATIONS); 279 } 280 281 /** 282 * Create a fraction given the double value and maximum error allowed. 283 * 284 * <p> 285 * References: 286 * <ul> 287 * <li><a href="http://mathworld.wolfram.com/ContinuedFraction.html"> 288 * Continued Fraction</a> equations (11) and (22)-(26)</li> 289 * </ul> 290 * 291 * @param value Value to convert to a fraction. 292 * @param epsilon Maximum error allowed. The resulting fraction is within 293 * {@code epsilon} of {@code value}, in absolute terms. 294 * @param maxIterations Maximum number of convergents. 295 * @throws IllegalArgumentException if the given {@code value} is NaN or infinite; 296 * {@code epsilon} is not positive; or {@code maxIterations < 1}. 297 * @throws ArithmeticException if the continued fraction failed to converge. 298 * @return a new instance. 299 */ 300 public static Fraction from(final double value, 301 final double epsilon, 302 final int maxIterations) { 303 if (value == 0) { 304 return ZERO; 305 } 306 if (maxIterations < 1) { 307 throw new IllegalArgumentException("Max iterations must be strictly positive: " + maxIterations); 308 } 309 if (epsilon >= 0) { 310 return new Fraction(value, epsilon, Integer.MIN_VALUE, maxIterations); 311 } 312 throw new IllegalArgumentException("Epsilon must be positive: " + maxIterations); 313 } 314 315 /** 316 * Create a fraction given the double value and maximum denominator. 317 * 318 * <p> 319 * References: 320 * <ul> 321 * <li><a href="http://mathworld.wolfram.com/ContinuedFraction.html"> 322 * Continued Fraction</a> equations (11) and (22)-(26)</li> 323 * </ul> 324 * 325 * <p>Note: The magnitude of the {@code maxDenominator} is used allowing use of 326 * {@link Integer#MIN_VALUE} for a supported maximum denominator of 2<sup>31</sup>. 327 * 328 * @param value Value to convert to a fraction. 329 * @param maxDenominator Maximum allowed value for denominator. 330 * @throws IllegalArgumentException if the given {@code value} is NaN or infinite 331 * or {@code maxDenominator} is zero. 332 * @throws ArithmeticException if the continued fraction failed to converge. 333 * @return a new instance. 334 */ 335 public static Fraction from(final double value, 336 final int maxDenominator) { 337 if (value == 0) { 338 return ZERO; 339 } 340 if (maxDenominator == 0) { 341 // Re-use the zero denominator message 342 throw new IllegalArgumentException(FractionException.ERROR_ZERO_DENOMINATOR); 343 } 344 return new Fraction(value, 0, maxDenominator, DEFAULT_MAX_ITERATIONS); 345 } 346 347 /** 348 * Create a fraction given the numerator. The denominator is {@code 1}. 349 * 350 * @param num Numerator. 351 * @return a new instance. 352 */ 353 public static Fraction of(final int num) { 354 if (num == 0) { 355 return ZERO; 356 } 357 return new Fraction(num); 358 } 359 360 /** 361 * Create a fraction given the numerator and denominator. 362 * The fraction is reduced to lowest terms. 363 * 364 * @param num Numerator. 365 * @param den Denominator. 366 * @throws ArithmeticException if the denominator is {@code zero}. 367 * @return a new instance. 368 */ 369 public static Fraction of(final int num, final int den) { 370 if (num == 0) { 371 return ZERO; 372 } 373 return new Fraction(num, den); 374 } 375 376 /** 377 * Returns a {@code Fraction} instance representing the specified string {@code s}. 378 * 379 * <p>If {@code s} is {@code null}, then a {@code NullPointerException} is thrown. 380 * 381 * <p>The string must be in a format compatible with that produced by 382 * {@link #toString() Fraction.toString()}. 383 * The format expects an integer optionally followed by a {@code '/'} character and 384 * and second integer. Leading and trailing spaces are allowed around each numeric part. 385 * Each numeric part is parsed using {@link Integer#parseInt(String)}. The parts 386 * are interpreted as the numerator and optional denominator of the fraction. If absent 387 * the denominator is assumed to be "1". 388 * 389 * <p>Examples of valid strings and the equivalent {@code Fraction} are shown below: 390 * 391 * <pre> 392 * "0" = Fraction.of(0) 393 * "42" = Fraction.of(42) 394 * "0 / 1" = Fraction.of(0, 1) 395 * "1 / 3" = Fraction.of(1, 3) 396 * "-4 / 13" = Fraction.of(-4, 13)</pre> 397 * 398 * <p>Note: The fraction is returned in reduced form and the numerator and denominator 399 * may not match the values in the input string. For this reason the result of 400 * {@code Fraction.parse(s).toString().equals(s)} may not be {@code true}. 401 * 402 * @param s String representation. 403 * @return an instance. 404 * @throws NullPointerException if the string is null. 405 * @throws NumberFormatException if the string does not contain a parsable fraction. 406 * @see Integer#parseInt(String) 407 * @see #toString() 408 */ 409 public static Fraction parse(String s) { 410 final String stripped = s.replace(",", ""); 411 final int slashLoc = stripped.indexOf('/'); 412 // if no slash, parse as single number 413 if (slashLoc == -1) { 414 return of(Integer.parseInt(stripped.trim())); 415 } 416 final int num = Integer.parseInt(stripped.substring(0, slashLoc).trim()); 417 final int denom = Integer.parseInt(stripped.substring(slashLoc + 1).trim()); 418 return of(num, denom); 419 } 420 421 @Override 422 public Fraction zero() { 423 return ZERO; 424 } 425 426 /** {@inheritDoc} */ 427 @Override 428 public boolean isZero() { 429 return numerator == 0; 430 } 431 432 @Override 433 public Fraction one() { 434 return ONE; 435 } 436 437 /** {@inheritDoc} */ 438 @Override 439 public boolean isOne() { 440 return numerator == denominator; 441 } 442 443 /** 444 * Access the numerator as an {@code int}. 445 * 446 * @return the numerator as an {@code int}. 447 */ 448 public int getNumerator() { 449 return numerator; 450 } 451 452 /** 453 * Access the denominator as an {@code int}. 454 * 455 * @return the denominator as an {@code int}. 456 */ 457 public int getDenominator() { 458 return denominator; 459 } 460 461 /** 462 * Retrieves the sign of this fraction. 463 * 464 * @return -1 if the value is strictly negative, 1 if it is strictly 465 * positive, 0 if it is 0. 466 */ 467 public int signum() { 468 return Integer.signum(numerator) * Integer.signum(denominator); 469 } 470 471 /** 472 * Returns the absolute value of this fraction. 473 * 474 * @return the absolute value. 475 */ 476 public Fraction abs() { 477 return signum() >= 0 ? 478 this : 479 negate(); 480 } 481 482 @Override 483 public Fraction negate() { 484 return numerator == Integer.MIN_VALUE ? 485 new Fraction(numerator, -denominator) : 486 new Fraction(-numerator, denominator); 487 } 488 489 /** 490 * {@inheritDoc} 491 * 492 * <p>Raises an exception if the fraction is equal to zero. 493 * 494 * @throws ArithmeticException if the current numerator is {@code zero} 495 */ 496 @Override 497 public Fraction reciprocal() { 498 return new Fraction(denominator, numerator); 499 } 500 501 /** 502 * Returns the {@code double} value closest to this fraction. 503 * This calculates the fraction as numerator divided by denominator. 504 * 505 * @return the fraction as a {@code double}. 506 */ 507 @Override 508 public double doubleValue() { 509 return (double) numerator / (double) denominator; 510 } 511 512 /** 513 * Returns the {@code float} value closest to this fraction. 514 * This calculates the fraction as numerator divided by denominator. 515 * 516 * @return the fraction as a {@code float}. 517 */ 518 @Override 519 public float floatValue() { 520 return (float) doubleValue(); 521 } 522 523 /** 524 * Returns the whole number part of the fraction. 525 * 526 * @return the largest {@code int} value that is not larger than this fraction. 527 */ 528 @Override 529 public int intValue() { 530 // Note: numerator / denominator fails for Integer.MIN_VALUE / -1. 531 // Casting the double value handles this case. 532 return (int) doubleValue(); 533 } 534 535 /** 536 * Returns the whole number part of the fraction. 537 * 538 * @return the largest {@code long} value that is not larger than this fraction. 539 */ 540 @Override 541 public long longValue() { 542 return (long) numerator / denominator; 543 } 544 545 /** 546 * Adds the specified {@code value} to this fraction, returning 547 * the result in reduced form. 548 * 549 * @param value Value to add. 550 * @return {@code this + value}. 551 * @throws ArithmeticException if the resulting numerator 552 * cannot be represented in an {@code int}. 553 */ 554 public Fraction add(final int value) { 555 if (value == 0) { 556 return this; 557 } 558 if (isZero()) { 559 return new Fraction(value); 560 } 561 // Convert to numerator with same effective denominator 562 final long num = (long) value * denominator; 563 return of(Math.toIntExact(numerator + num), denominator); 564 } 565 566 /** 567 * Adds the specified {@code value} to this fraction, returning 568 * the result in reduced form. 569 * 570 * @param value Value to add. 571 * @return {@code this + value}. 572 * @throws ArithmeticException if the resulting numerator or denominator 573 * cannot be represented in an {@code int}. 574 */ 575 @Override 576 public Fraction add(Fraction value) { 577 return addSub(value, true /* add */); 578 } 579 580 /** 581 * Subtracts the specified {@code value} from this fraction, returning 582 * the result in reduced form. 583 * 584 * @param value Value to subtract. 585 * @return {@code this - value}. 586 * @throws ArithmeticException if the resulting numerator 587 * cannot be represented in an {@code int}. 588 */ 589 public Fraction subtract(final int value) { 590 if (value == 0) { 591 return this; 592 } 593 if (isZero()) { 594 // Special case for min value 595 return value == Integer.MIN_VALUE ? 596 new Fraction(Integer.MIN_VALUE, -1) : 597 new Fraction(-value); 598 } 599 // Convert to numerator with same effective denominator 600 final long num = (long) value * denominator; 601 return of(Math.toIntExact(numerator - num), denominator); 602 } 603 604 /** 605 * Subtracts the specified {@code value} from this fraction, returning 606 * the result in reduced form. 607 * 608 * @param value Value to subtract. 609 * @return {@code this - value}. 610 * @throws ArithmeticException if the resulting numerator or denominator 611 * cannot be represented in an {@code int}. 612 */ 613 @Override 614 public Fraction subtract(Fraction value) { 615 return addSub(value, false /* subtract */); 616 } 617 618 /** 619 * Implements add and subtract using algorithm described in Knuth 4.5.1. 620 * 621 * @param value Fraction to add or subtract. 622 * @param isAdd Whether the operation is "add" or "subtract". 623 * @return a new instance. 624 * @throws ArithmeticException if the resulting numerator or denominator 625 * cannot be represented in an {@code int}. 626 */ 627 private Fraction addSub(Fraction value, boolean isAdd) { 628 if (value.isZero()) { 629 return this; 630 } 631 // Zero is identity for addition. 632 if (isZero()) { 633 return isAdd ? value : value.negate(); 634 } 635 636 /* 637 * Let the two fractions be u/u' and v/v', and d1 = gcd(u', v'). 638 * First, compute t, defined as: 639 * 640 * t = u(v'/d1) +/- v(u'/d1) 641 */ 642 final int d1 = ArithmeticUtils.gcd(denominator, value.denominator); 643 final long uvp = (long) numerator * (long) (value.denominator / d1); 644 final long upv = (long) value.numerator * (long) (denominator / d1); 645 646 /* 647 * The largest possible absolute value of a product of two ints is 2^62, 648 * which can only happen as a result of -2^31 * -2^31 = 2^62, so a 649 * product of -2^62 is not possible. It follows that (uvp - upv) cannot 650 * overflow, and (uvp + upv) could only overflow if uvp = upv = 2^62. 651 * But for this to happen, the terms u, v, v'/d1 and u'/d1 would all 652 * have to be -2^31, which is not possible because v'/d1 and u'/d1 653 * are necessarily coprime. 654 */ 655 final long t = isAdd ? uvp + upv : uvp - upv; 656 657 /* 658 * Because u is coprime to u' and v is coprime to v', t is necessarily 659 * coprime to both v'/d1 and u'/d1. However, it might have a common 660 * factor with d1. 661 */ 662 final long d2 = ArithmeticUtils.gcd(t, d1); 663 // result is (t/d2) / (u'/d1)(v'/d2) 664 return of(Math.toIntExact(t / d2), 665 Math.multiplyExact(denominator / d1, 666 value.denominator / (int) d2)); 667 } 668 669 /** 670 * Multiply this fraction by the passed {@code value}, returning 671 * the result in reduced form. 672 * 673 * @param value Value to multiply by. 674 * @return {@code this * value}. 675 * @throws ArithmeticException if the resulting numerator 676 * cannot be represented in an {@code int}. 677 */ 678 @Override 679 public Fraction multiply(final int value) { 680 if (value == 0 || isZero()) { 681 return ZERO; 682 } 683 684 // knuth 4.5.1 685 // Make sure we don't overflow unless the result *must* overflow. 686 // (see multiply(Fraction) using value / 1 as the argument). 687 final int d2 = ArithmeticUtils.gcd(value, denominator); 688 return new Fraction(Math.multiplyExact(numerator, value / d2), 689 denominator / d2); 690 } 691 692 /** 693 * Multiply this fraction by the passed {@code value}, returning 694 * the result in reduced form. 695 * 696 * @param value Value to multiply by. 697 * @return {@code this * value}. 698 * @throws ArithmeticException if the resulting numerator or denominator 699 * cannot be represented in an {@code int}. 700 */ 701 @Override 702 public Fraction multiply(Fraction value) { 703 if (value.isZero() || isZero()) { 704 return ZERO; 705 } 706 return multiply(value.numerator, value.denominator); 707 } 708 709 /** 710 * Multiply this fraction by the passed fraction decomposed into a numerator and 711 * denominator, returning the result in reduced form. 712 * 713 * <p>This is a utility method to be used by multiply and divide. The decomposed 714 * fraction arguments and this fraction are not checked for zero. 715 * 716 * @param num Fraction numerator. 717 * @param den Fraction denominator. 718 * @return {@code this * num / den}. 719 * @throws ArithmeticException if the resulting numerator or denominator cannot 720 * be represented in an {@code int}. 721 */ 722 private Fraction multiply(int num, int den) { 723 // knuth 4.5.1 724 // Make sure we don't overflow unless the result *must* overflow. 725 final int d1 = ArithmeticUtils.gcd(numerator, den); 726 final int d2 = ArithmeticUtils.gcd(num, denominator); 727 return new Fraction(Math.multiplyExact(numerator / d1, num / d2), 728 Math.multiplyExact(denominator / d2, den / d1)); 729 } 730 731 /** 732 * Divide this fraction by the passed {@code value}, returning 733 * the result in reduced form. 734 * 735 * @param value Value to divide by 736 * @return {@code this / value}. 737 * @throws ArithmeticException if the value to divide by is zero 738 * or if the resulting numerator or denominator cannot be represented 739 * by an {@code int}. 740 */ 741 public Fraction divide(final int value) { 742 if (value == 0) { 743 throw new FractionException(FractionException.ERROR_DIVIDE_BY_ZERO); 744 } 745 if (isZero()) { 746 return ZERO; 747 } 748 // Multiply by reciprocal 749 750 // knuth 4.5.1 751 // Make sure we don't overflow unless the result *must* overflow. 752 // (see multiply(Fraction) using 1 / value as the argument). 753 final int d1 = ArithmeticUtils.gcd(numerator, value); 754 return new Fraction(numerator / d1, 755 Math.multiplyExact(denominator, value / d1)); 756 } 757 758 /** 759 * Divide this fraction by the passed {@code value}, returning 760 * the result in reduced form. 761 * 762 * @param value Value to divide by 763 * @return {@code this / value}. 764 * @throws ArithmeticException if the value to divide by is zero 765 * or if the resulting numerator or denominator cannot be represented 766 * by an {@code int}. 767 */ 768 @Override 769 public Fraction divide(Fraction value) { 770 if (value.isZero()) { 771 throw new FractionException(FractionException.ERROR_DIVIDE_BY_ZERO); 772 } 773 if (isZero()) { 774 return ZERO; 775 } 776 // Multiply by reciprocal 777 return multiply(value.denominator, value.numerator); 778 } 779 780 /** 781 * Returns a {@code Fraction} whose value is 782 * <code>this<sup>exponent</sup></code>, returning the result in reduced form. 783 * 784 * @param exponent exponent to which this {@code Fraction} is to be raised. 785 * @return <code>this<sup>exponent</sup></code>. 786 * @throws ArithmeticException if the intermediate result would overflow. 787 */ 788 @Override 789 public Fraction pow(final int exponent) { 790 if (exponent == 1) { 791 return this; 792 } 793 if (exponent == 0) { 794 return ONE; 795 } 796 if (isZero()) { 797 if (exponent < 0) { 798 throw new FractionException(FractionException.ERROR_ZERO_DENOMINATOR); 799 } 800 return ZERO; 801 } 802 if (exponent > 0) { 803 return new Fraction(ArithmeticUtils.pow(numerator, exponent), 804 ArithmeticUtils.pow(denominator, exponent)); 805 } 806 if (exponent == -1) { 807 return this.reciprocal(); 808 } 809 if (exponent == Integer.MIN_VALUE) { 810 // MIN_VALUE can't be negated 811 return new Fraction(ArithmeticUtils.pow(denominator, Integer.MAX_VALUE) * denominator, 812 ArithmeticUtils.pow(numerator, Integer.MAX_VALUE) * numerator); 813 } 814 return new Fraction(ArithmeticUtils.pow(denominator, -exponent), 815 ArithmeticUtils.pow(numerator, -exponent)); 816 } 817 818 /** 819 * Returns the {@code String} representing this fraction. 820 * Uses: 821 * <ul> 822 * <li>{@code "0"} if {@code numerator} is zero. 823 * <li>{@code "numerator"} if {@code denominator} is one. 824 * <li>{@code "numerator / denominator"} for all other cases. 825 * </ul> 826 * 827 * @return a string representation of the fraction. 828 */ 829 @Override 830 public String toString() { 831 final String str; 832 if (isZero()) { 833 str = "0"; 834 } else if (denominator == 1) { 835 str = Integer.toString(numerator); 836 } else { 837 str = numerator + " / " + denominator; 838 } 839 return str; 840 } 841 842 /** 843 * Compares this object with the specified object for order using the signed magnitude. 844 * 845 * @param other {@inheritDoc} 846 * @return {@inheritDoc} 847 */ 848 @Override 849 public int compareTo(Fraction other) { 850 // Compute the sign of each part 851 final int lns = Integer.signum(numerator); 852 final int lds = Integer.signum(denominator); 853 final int rns = Integer.signum(other.numerator); 854 final int rds = Integer.signum(other.denominator); 855 856 final int lhsSigNum = lns * lds; 857 final int rhsSigNum = rns * rds; 858 859 if (lhsSigNum != rhsSigNum) { 860 return (lhsSigNum > rhsSigNum) ? 1 : -1; 861 } 862 // Same sign. 863 // Avoid a multiply if both fractions are zero 864 if (lhsSigNum == 0) { 865 return 0; 866 } 867 // Compare absolute magnitude. 868 // Multiplication by the signum is equal to the absolute. 869 final long nOd = ((long) numerator) * lns * other.denominator * rds; 870 final long dOn = ((long) denominator) * lds * other.numerator * rns; 871 return Long.compare(nOd, dOn); 872 } 873 874 /** 875 * Test for equality with another object. If the other object is a {@code Fraction} then a 876 * comparison is made of the sign and magnitude; otherwise {@code false} is returned. 877 * 878 * @param other {@inheritDoc} 879 * @return {@inheritDoc} 880 */ 881 @Override 882 public boolean equals(Object other) { 883 if (this == other) { 884 return true; 885 } 886 887 if (other instanceof Fraction) { 888 // Since fractions are always in lowest terms, numerators and 889 // denominators can be compared directly for equality. 890 final Fraction rhs = (Fraction) other; 891 if (signum() == rhs.signum()) { 892 return Math.abs(numerator) == Math.abs(rhs.numerator) && 893 Math.abs(denominator) == Math.abs(rhs.denominator); 894 } 895 } 896 897 return false; 898 } 899 900 @Override 901 public int hashCode() { 902 // Incorporate the sign and absolute values of the numerator and denominator. 903 // Equivalent to: 904 // int hash = 1; 905 // hash = 31 * hash + Math.abs(numerator); 906 // hash = 31 * hash + Math.abs(denominator); 907 // hash = hash * signum() 908 // Note: x * Integer.signum(x) == Math.abs(x). 909 final int numS = Integer.signum(numerator); 910 final int denS = Integer.signum(denominator); 911 return (31 * (31 + numerator * numS) + denominator * denS) * numS * denS; 912 } 913}