BigFraction.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.numbers.fraction;
- import java.io.Serializable;
- import java.math.BigDecimal;
- import java.math.BigInteger;
- import java.math.RoundingMode;
- import java.util.Objects;
- import org.apache.commons.numbers.core.NativeOperators;
- /**
- * Representation of a rational number using arbitrary precision.
- *
- * <p>The number is expressed as the quotient {@code p/q} of two {@link BigInteger}s,
- * a numerator {@code p} and a non-zero denominator {@code q}.
- *
- * <p>This class is immutable.
- *
- * <a href="https://en.wikipedia.org/wiki/Rational_number">Rational number</a>
- */
- public final class BigFraction
- extends Number
- implements Comparable<BigFraction>,
- NativeOperators<BigFraction>,
- Serializable {
- /** A fraction representing "0". */
- public static final BigFraction ZERO = new BigFraction(BigInteger.ZERO);
- /** A fraction representing "1". */
- public static final BigFraction ONE = new BigFraction(BigInteger.ONE);
- /** Serializable version identifier. */
- private static final long serialVersionUID = 20190701L;
- /** The default iterations used for convergence. */
- private static final int DEFAULT_MAX_ITERATIONS = 100;
- /** Message for non-finite input double argument to factory constructors. */
- private static final String NOT_FINITE = "Not finite: ";
- /** The overflow limit for conversion from a double (2^31). */
- private static final long OVERFLOW = 1L << 31;
- /** The numerator of this fraction reduced to lowest terms. */
- private final BigInteger numerator;
- /** The denominator of this fraction reduced to lowest terms. */
- private final BigInteger denominator;
- /**
- * Private constructor: Instances are created using factory methods.
- *
- * <p>This constructor should only be invoked when the fraction is known
- * to be non-zero; otherwise use {@link #ZERO}. This avoids creating
- * the zero representation {@code 0 / -1}.
- *
- * @param num Numerator, must not be {@code null}.
- * @param den Denominator, must not be {@code null}.
- * @throws ArithmeticException if the denominator is zero.
- */
- private BigFraction(BigInteger num, BigInteger den) {
- if (den.signum() == 0) {
- throw new FractionException(FractionException.ERROR_ZERO_DENOMINATOR);
- }
- // reduce numerator and denominator by greatest common denominator
- final BigInteger gcd = num.gcd(den);
- if (BigInteger.ONE.compareTo(gcd) < 0) {
- numerator = num.divide(gcd);
- denominator = den.divide(gcd);
- } else {
- numerator = num;
- denominator = den;
- }
- }
- /**
- * Private constructor: Instances are created using factory methods.
- *
- * <p>This sets the denominator to 1.
- *
- * @param num Numerator (must not be null).
- */
- private BigFraction(BigInteger num) {
- numerator = num;
- denominator = BigInteger.ONE;
- }
- /**
- * Create a fraction given the double value and either the maximum
- * error allowed or the maximum number of denominator digits.
- *
- * <p>
- * NOTE: This method is called with:
- * </p>
- * <ul>
- * <li>EITHER a valid epsilon value and the maxDenominator set to
- * Integer.MAX_VALUE (that way the maxDenominator has no effect)
- * <li>OR a valid maxDenominator value and the epsilon value set to
- * zero (that way epsilon only has effect if there is an exact
- * match before the maxDenominator value is reached).
- * </ul>
- * <p>
- * It has been done this way so that the same code can be reused for
- * both scenarios. However this could be confusing to users if it
- * were part of the public API and this method should therefore remain
- * PRIVATE.
- * </p>
- *
- * <p>
- * See JIRA issue ticket MATH-181 for more details:
- * https://issues.apache.org/jira/browse/MATH-181
- * </p>
- *
- * @param value Value to convert to a fraction.
- * @param epsilon Maximum error allowed.
- * The resulting fraction is within {@code epsilon} of {@code value},
- * in absolute terms.
- * @param maxDenominator Maximum denominator value allowed.
- * @param maxIterations Maximum number of convergents.
- * @return a new instance.
- * @throws IllegalArgumentException if the given {@code value} is NaN or infinite.
- * @throws ArithmeticException if the continued fraction failed to converge.
- */
- private static BigFraction from(final double value,
- final double epsilon,
- final int maxDenominator,
- final int maxIterations) {
- if (!Double.isFinite(value)) {
- throw new IllegalArgumentException(NOT_FINITE + value);
- }
- if (value == 0) {
- return ZERO;
- }
- // Remove sign, this is restored at the end.
- // (Assumes the value is not zero and thus signum(value) is not zero).
- final double absValue = Math.abs(value);
- double r0 = absValue;
- long a0 = (long) Math.floor(r0);
- if (a0 > OVERFLOW) {
- throw new FractionException(FractionException.ERROR_CONVERSION_OVERFLOW, value, a0, 1);
- }
- // check for (almost) integer arguments, which should not go to iterations.
- if (r0 - a0 <= epsilon) {
- // Restore the sign.
- if (value < 0) {
- a0 = -a0;
- }
- return new BigFraction(BigInteger.valueOf(a0));
- }
- // Support 2^31 as maximum denominator.
- // This is negative as an integer so convert to long.
- final long maxDen = Math.abs((long) maxDenominator);
- long p0 = 1;
- long q0 = 0;
- long p1 = a0;
- long q1 = 1;
- long p2;
- long q2;
- int n = 0;
- boolean stop = false;
- do {
- ++n;
- final double r1 = 1.0 / (r0 - a0);
- final long a1 = (long) Math.floor(r1);
- p2 = (a1 * p1) + p0;
- q2 = (a1 * q1) + q0;
- if (Long.compareUnsigned(p2, OVERFLOW) > 0 ||
- Long.compareUnsigned(q2, OVERFLOW) > 0) {
- // In maxDenominator mode, fall-back to the previous valid fraction.
- if (epsilon == 0) {
- p2 = p1;
- q2 = q1;
- break;
- }
- throw new FractionException(FractionException.ERROR_CONVERSION_OVERFLOW, value, p2, q2);
- }
- final double convergent = (double) p2 / (double) q2;
- if (n < maxIterations &&
- Math.abs(convergent - absValue) > epsilon &&
- q2 < maxDen) {
- p0 = p1;
- p1 = p2;
- q0 = q1;
- q1 = q2;
- a0 = a1;
- r0 = r1;
- } else {
- stop = true;
- }
- } while (!stop);
- if (n >= maxIterations) {
- throw new FractionException(FractionException.ERROR_CONVERSION, value, maxIterations);
- }
- // Use p2 / q2 or p1 / q1 if q2 has grown too large in maxDenominator mode
- long num;
- long den;
- if (q2 <= maxDen) {
- num = p2;
- den = q2;
- } else {
- num = p1;
- den = q1;
- }
- // Restore the sign.
- if (Math.signum(num) * Math.signum(den) != Math.signum(value)) {
- num = -num;
- }
- return new BigFraction(BigInteger.valueOf(num),
- BigInteger.valueOf(den));
- }
- /**
- * Create a fraction given the double value.
- * <p>
- * This factory method behaves <em>differently</em> to the method
- * {@link #from(double, double, int)}. It converts the double value
- * exactly, considering its internal bits representation. This works for all
- * values except NaN and infinities and does not requires any loop or
- * convergence threshold.
- * </p>
- * <p>
- * Since this conversion is exact and since double numbers are sometimes
- * approximated, the fraction created may seem strange in some cases. For example,
- * calling {@code from(1.0 / 3.0)} does <em>not</em> create
- * the fraction \( \frac{1}{3} \), but the fraction \( \frac{6004799503160661}{18014398509481984} \)
- * because the double number passed to the method is not exactly \( \frac{1}{3} \)
- * (which cannot be represented exactly in IEEE754).
- * </p>
- *
- * @param value Value to convert to a fraction.
- * @throws IllegalArgumentException if the given {@code value} is NaN or infinite.
- * @return a new instance.
- *
- * @see #from(double,double,int)
- */
- public static BigFraction from(final double value) {
- if (!Double.isFinite(value)) {
- throw new IllegalArgumentException(NOT_FINITE + value);
- }
- if (value == 0) {
- return ZERO;
- }
- final long bits = Double.doubleToLongBits(value);
- final long sign = bits & 0x8000000000000000L;
- final long exponent = bits & 0x7ff0000000000000L;
- final long mantissa = bits & 0x000fffffffffffffL;
- // Compute m and k such that value = m * 2^k
- long m;
- int k;
- if (exponent == 0) {
- // Subnormal number, the effective exponent bias is 1022, not 1023.
- // Note: mantissa is never zero as that case has been eliminated.
- m = mantissa;
- k = -1074;
- } else {
- // Normalized number: Add the implicit most significant bit.
- m = mantissa | 0x0010000000000000L;
- k = ((int) (exponent >> 52)) - 1075; // Exponent bias is 1023.
- }
- if (sign != 0) {
- m = -m;
- }
- while ((m & 0x001ffffffffffffeL) != 0 &&
- (m & 0x1) == 0) {
- m >>= 1;
- ++k;
- }
- return k < 0 ?
- new BigFraction(BigInteger.valueOf(m),
- BigInteger.ZERO.flipBit(-k)) :
- new BigFraction(BigInteger.valueOf(m).multiply(BigInteger.ZERO.flipBit(k)),
- BigInteger.ONE);
- }
- /**
- * Create a fraction given the double value and maximum error allowed.
- * <p>
- * References:
- * <ul>
- * <li><a href="http://mathworld.wolfram.com/ContinuedFraction.html">
- * Continued Fraction</a> equations (11) and (22)-(26)</li>
- * </ul>
- *
- * @param value Value to convert to a fraction.
- * @param epsilon Maximum error allowed. The resulting fraction is within
- * {@code epsilon} of {@code value}, in absolute terms.
- * @param maxIterations Maximum number of convergents.
- * @throws IllegalArgumentException if the given {@code value} is NaN or infinite;
- * {@code epsilon} is not positive; or {@code maxIterations < 1}.
- * @throws ArithmeticException if the continued fraction failed to converge.
- * @return a new instance.
- */
- public static BigFraction from(final double value,
- final double epsilon,
- final int maxIterations) {
- if (maxIterations < 1) {
- throw new IllegalArgumentException("Max iterations must be strictly positive: " + maxIterations);
- }
- if (epsilon >= 0) {
- return from(value, epsilon, Integer.MIN_VALUE, maxIterations);
- }
- throw new IllegalArgumentException("Epsilon must be positive: " + maxIterations);
- }
- /**
- * Create a fraction given the double value and maximum denominator.
- *
- * <p>
- * References:
- * <ul>
- * <li><a href="http://mathworld.wolfram.com/ContinuedFraction.html">
- * Continued Fraction</a> equations (11) and (22)-(26)</li>
- * </ul>
- *
- * <p>Note: The magnitude of the {@code maxDenominator} is used allowing use of
- * {@link Integer#MIN_VALUE} for a supported maximum denominator of 2<sup>31</sup>.
- *
- * @param value Value to convert to a fraction.
- * @param maxDenominator Maximum allowed value for denominator.
- * @throws IllegalArgumentException if the given {@code value} is NaN or infinite
- * or {@code maxDenominator} is zero.
- * @throws ArithmeticException if the continued fraction failed to converge.
- * @return a new instance.
- */
- public static BigFraction from(final double value,
- final int maxDenominator) {
- if (maxDenominator == 0) {
- // Re-use the zero denominator message
- throw new IllegalArgumentException(FractionException.ERROR_ZERO_DENOMINATOR);
- }
- return from(value, 0, maxDenominator, DEFAULT_MAX_ITERATIONS);
- }
- /**
- * Create a fraction given the numerator. The denominator is {@code 1}.
- *
- * @param num
- * the numerator.
- * @return a new instance.
- */
- public static BigFraction of(final int num) {
- if (num == 0) {
- return ZERO;
- }
- return new BigFraction(BigInteger.valueOf(num));
- }
- /**
- * Create a fraction given the numerator. The denominator is {@code 1}.
- *
- * @param num Numerator.
- * @return a new instance.
- */
- public static BigFraction of(final long num) {
- if (num == 0) {
- return ZERO;
- }
- return new BigFraction(BigInteger.valueOf(num));
- }
- /**
- * Create a fraction given the numerator. The denominator is {@code 1}.
- *
- * @param num Numerator.
- * @return a new instance.
- * @throws NullPointerException if numerator is null.
- */
- public static BigFraction of(final BigInteger num) {
- Objects.requireNonNull(num, "numerator");
- if (num.signum() == 0) {
- return ZERO;
- }
- return new BigFraction(num);
- }
- /**
- * Create a fraction given the numerator and denominator.
- * The fraction is reduced to lowest terms.
- *
- * @param num Numerator.
- * @param den Denominator.
- * @return a new instance.
- * @throws ArithmeticException if {@code den} is zero.
- */
- public static BigFraction of(final int num, final int den) {
- if (num == 0) {
- return ZERO;
- }
- return new BigFraction(BigInteger.valueOf(num), BigInteger.valueOf(den));
- }
- /**
- * Create a fraction given the numerator and denominator.
- * The fraction is reduced to lowest terms.
- *
- * @param num Numerator.
- * @param den Denominator.
- * @return a new instance.
- * @throws ArithmeticException if {@code den} is zero.
- */
- public static BigFraction of(final long num, final long den) {
- if (num == 0) {
- return ZERO;
- }
- return new BigFraction(BigInteger.valueOf(num), BigInteger.valueOf(den));
- }
- /**
- * Create a fraction given the numerator and denominator.
- * The fraction is reduced to lowest terms.
- *
- * @param num Numerator.
- * @param den Denominator.
- * @return a new instance.
- * @throws NullPointerException if numerator or denominator are null.
- * @throws ArithmeticException if the denominator is zero.
- */
- public static BigFraction of(final BigInteger num, final BigInteger den) {
- if (num.signum() == 0) {
- return ZERO;
- }
- return new BigFraction(num, den);
- }
- /**
- * Returns a {@code BigFraction} instance representing the specified string {@code s}.
- *
- * <p>If {@code s} is {@code null}, then a {@code NullPointerException} is thrown.
- *
- * <p>The string must be in a format compatible with that produced by
- * {@link #toString() BigFraction.toString()}.
- * The format expects an integer optionally followed by a {@code '/'} character and
- * and second integer. Leading and trailing spaces are allowed around each numeric part.
- * Each numeric part is parsed using {@link BigInteger#BigInteger(String)}. The parts
- * are interpreted as the numerator and optional denominator of the fraction. If absent
- * the denominator is assumed to be "1".
- *
- * <p>Examples of valid strings and the equivalent {@code BigFraction} are shown below:
- *
- * <pre>
- * "0" = BigFraction.of(0)
- * "42" = BigFraction.of(42)
- * "0 / 1" = BigFraction.of(0, 1)
- * "1 / 3" = BigFraction.of(1, 3)
- * "-4 / 13" = BigFraction.of(-4, 13)</pre>
- *
- * <p>Note: The fraction is returned in reduced form and the numerator and denominator
- * may not match the values in the input string. For this reason the result of
- * {@code BigFraction.parse(s).toString().equals(s)} may not be {@code true}.
- *
- * @param s String representation.
- * @return an instance.
- * @throws NullPointerException if the string is null.
- * @throws NumberFormatException if the string does not contain a parsable fraction.
- * @see BigInteger#BigInteger(String)
- * @see #toString()
- */
- public static BigFraction parse(String s) {
- final String stripped = s.replace(",", "");
- final int slashLoc = stripped.indexOf('/');
- // if no slash, parse as single number
- if (slashLoc == -1) {
- return of(new BigInteger(stripped.trim()));
- }
- final BigInteger num = new BigInteger(stripped.substring(0, slashLoc).trim());
- final BigInteger denom = new BigInteger(stripped.substring(slashLoc + 1).trim());
- return of(num, denom);
- }
- @Override
- public BigFraction zero() {
- return ZERO;
- }
- /** {@inheritDoc} */
- @Override
- public boolean isZero() {
- return numerator.signum() == 0;
- }
- @Override
- public BigFraction one() {
- return ONE;
- }
- /** {@inheritDoc} */
- @Override
- public boolean isOne() {
- return numerator.equals(denominator);
- }
- /**
- * Access the numerator as a {@code BigInteger}.
- *
- * @return the numerator as a {@code BigInteger}.
- */
- public BigInteger getNumerator() {
- return numerator;
- }
- /**
- * Access the numerator as an {@code int}.
- *
- * @return the numerator as an {@code int}.
- */
- public int getNumeratorAsInt() {
- return numerator.intValue();
- }
- /**
- * Access the numerator as a {@code long}.
- *
- * @return the numerator as a {@code long}.
- */
- public long getNumeratorAsLong() {
- return numerator.longValue();
- }
- /**
- * Access the denominator as a {@code BigInteger}.
- *
- * @return the denominator as a {@code BigInteger}.
- */
- public BigInteger getDenominator() {
- return denominator;
- }
- /**
- * Access the denominator as an {@code int}.
- *
- * @return the denominator as an {@code int}.
- */
- public int getDenominatorAsInt() {
- return denominator.intValue();
- }
- /**
- * Access the denominator as a {@code long}.
- *
- * @return the denominator as a {@code long}.
- */
- public long getDenominatorAsLong() {
- return denominator.longValue();
- }
- /**
- * Retrieves the sign of this fraction.
- *
- * @return -1 if the value is strictly negative, 1 if it is strictly
- * positive, 0 if it is 0.
- */
- public int signum() {
- return numerator.signum() * denominator.signum();
- }
- /**
- * Returns the absolute value of this fraction.
- *
- * @return the absolute value.
- */
- public BigFraction abs() {
- return signum() >= 0 ?
- this :
- negate();
- }
- @Override
- public BigFraction negate() {
- return new BigFraction(numerator.negate(), denominator);
- }
- /**
- * {@inheritDoc}
- *
- * <p>Raises an exception if the fraction is equal to zero.
- *
- * @throws ArithmeticException if the current numerator is {@code zero}
- */
- @Override
- public BigFraction reciprocal() {
- return new BigFraction(denominator, numerator);
- }
- /**
- * Returns the {@code double} value closest to this fraction.
- *
- * @return the fraction as a {@code double}.
- */
- @Override
- public double doubleValue() {
- return Double.longBitsToDouble(toFloatingPointBits(11, 52));
- }
- /**
- * Returns the {@code float} value closest to this fraction.
- *
- * @return the fraction as a {@code double}.
- */
- @Override
- public float floatValue() {
- return Float.intBitsToFloat((int) toFloatingPointBits(8, 23));
- }
- /**
- * Returns the whole number part of the fraction.
- *
- * @return the largest {@code int} value that is not larger than this fraction.
- */
- @Override
- public int intValue() {
- return numerator.divide(denominator).intValue();
- }
- /**
- * Returns the whole number part of the fraction.
- *
- * @return the largest {@code long} value that is not larger than this fraction.
- */
- @Override
- public long longValue() {
- return numerator.divide(denominator).longValue();
- }
- /**
- * Returns the {@code BigDecimal} representation of this fraction.
- * This calculates the fraction as numerator divided by denominator.
- *
- * @return the fraction as a {@code BigDecimal}.
- * @throws ArithmeticException
- * if the exact quotient does not have a terminating decimal
- * expansion.
- * @see BigDecimal
- */
- public BigDecimal bigDecimalValue() {
- return new BigDecimal(numerator).divide(new BigDecimal(denominator));
- }
- /**
- * Returns the {@code BigDecimal} representation of this fraction.
- * This calculates the fraction as numerator divided by denominator
- * following the passed rounding mode.
- *
- * @param roundingMode Rounding mode to apply.
- * @return the fraction as a {@code BigDecimal}.
- * @see BigDecimal
- */
- public BigDecimal bigDecimalValue(RoundingMode roundingMode) {
- return new BigDecimal(numerator).divide(new BigDecimal(denominator), roundingMode);
- }
- /**
- * Returns the {@code BigDecimal} representation of this fraction.
- * This calculates the fraction as numerator divided by denominator
- * following the passed scale and rounding mode.
- *
- * @param scale
- * scale of the {@code BigDecimal} quotient to be returned.
- * see {@link BigDecimal} for more information.
- * @param roundingMode Rounding mode to apply.
- * @return the fraction as a {@code BigDecimal}.
- * @throws ArithmeticException if {@code roundingMode} == {@link RoundingMode#UNNECESSARY} and
- * the specified scale is insufficient to represent the result of the division exactly.
- * @see BigDecimal
- */
- public BigDecimal bigDecimalValue(final int scale, RoundingMode roundingMode) {
- return new BigDecimal(numerator).divide(new BigDecimal(denominator), scale, roundingMode);
- }
- /**
- * Adds the specified {@code value} to this fraction, returning
- * the result in reduced form.
- *
- * @param value Value to add.
- * @return {@code this + value}.
- */
- public BigFraction add(final int value) {
- return add(BigInteger.valueOf(value));
- }
- /**
- * Adds the specified {@code value} to this fraction, returning
- * the result in reduced form.
- *
- * @param value Value to add.
- * @return {@code this + value}.
- */
- public BigFraction add(final long value) {
- return add(BigInteger.valueOf(value));
- }
- /**
- * Adds the specified {@code value} to this fraction, returning
- * the result in reduced form.
- *
- * @param value Value to add.
- * @return {@code this + value}.
- */
- public BigFraction add(final BigInteger value) {
- if (value.signum() == 0) {
- return this;
- }
- if (isZero()) {
- return of(value);
- }
- return of(numerator.add(denominator.multiply(value)), denominator);
- }
- /**
- * Adds the specified {@code value} to this fraction, returning
- * the result in reduced form.
- *
- * @param value Value to add.
- * @return {@code this + value}.
- */
- @Override
- public BigFraction add(final BigFraction value) {
- if (value.isZero()) {
- return this;
- }
- if (isZero()) {
- return value;
- }
- final BigInteger num;
- final BigInteger den;
- if (denominator.equals(value.denominator)) {
- num = numerator.add(value.numerator);
- den = denominator;
- } else {
- num = (numerator.multiply(value.denominator)).add((value.numerator).multiply(denominator));
- den = denominator.multiply(value.denominator);
- }
- if (num.signum() == 0) {
- return ZERO;
- }
- return new BigFraction(num, den);
- }
- /**
- * Subtracts the specified {@code value} from this fraction, returning
- * the result in reduced form.
- *
- * @param value Value to subtract.
- * @return {@code this - value}.
- */
- public BigFraction subtract(final int value) {
- return subtract(BigInteger.valueOf(value));
- }
- /**
- * Subtracts the specified {@code value} from this fraction, returning
- * the result in reduced form.
- *
- * @param value Value to subtract.
- * @return {@code this - value}.
- */
- public BigFraction subtract(final long value) {
- return subtract(BigInteger.valueOf(value));
- }
- /**
- * Subtracts the specified {@code value} from this fraction, returning
- * the result in reduced form.
- *
- * @param value Value to subtract.
- * @return {@code this - value}.
- */
- public BigFraction subtract(final BigInteger value) {
- if (value.signum() == 0) {
- return this;
- }
- if (isZero()) {
- return of(value.negate());
- }
- return of(numerator.subtract(denominator.multiply(value)), denominator);
- }
- /**
- * Subtracts the specified {@code value} from this fraction, returning
- * the result in reduced form.
- *
- * @param value Value to subtract.
- * @return {@code this - value}.
- */
- @Override
- public BigFraction subtract(final BigFraction value) {
- if (value.isZero()) {
- return this;
- }
- if (isZero()) {
- return value.negate();
- }
- final BigInteger num;
- final BigInteger den;
- if (denominator.equals(value.denominator)) {
- num = numerator.subtract(value.numerator);
- den = denominator;
- } else {
- num = (numerator.multiply(value.denominator)).subtract((value.numerator).multiply(denominator));
- den = denominator.multiply(value.denominator);
- }
- if (num.signum() == 0) {
- return ZERO;
- }
- return new BigFraction(num, den);
- }
- /**
- * Multiply this fraction by the passed {@code value}, returning
- * the result in reduced form.
- *
- * @param value Value to multiply by.
- * @return {@code this * value}.
- */
- @Override
- public BigFraction multiply(final int value) {
- if (value == 0 || isZero()) {
- return ZERO;
- }
- return multiply(BigInteger.valueOf(value));
- }
- /**
- * Multiply this fraction by the passed {@code value}, returning
- * the result in reduced form.
- *
- * @param value Value to multiply by.
- * @return {@code this * value}.
- */
- public BigFraction multiply(final long value) {
- if (value == 0 || isZero()) {
- return ZERO;
- }
- return multiply(BigInteger.valueOf(value));
- }
- /**
- * Multiply this fraction by the passed {@code value}, returning
- * the result in reduced form.
- *
- * @param value Value to multiply by.
- * @return {@code this * value}.
- */
- public BigFraction multiply(final BigInteger value) {
- if (value.signum() == 0 || isZero()) {
- return ZERO;
- }
- return new BigFraction(value.multiply(numerator), denominator);
- }
- /**
- * Multiply this fraction by the passed {@code value}, returning
- * the result in reduced form.
- *
- * @param value Value to multiply by.
- * @return {@code this * value}.
- */
- @Override
- public BigFraction multiply(final BigFraction value) {
- if (value.isZero() || isZero()) {
- return ZERO;
- }
- return new BigFraction(numerator.multiply(value.numerator),
- denominator.multiply(value.denominator));
- }
- /**
- * Divide this fraction by the passed {@code value}, returning
- * the result in reduced form.
- *
- * @param value Value to divide by
- * @return {@code this / value}.
- * @throws ArithmeticException if the value to divide by is zero
- */
- public BigFraction divide(final int value) {
- return divide(BigInteger.valueOf(value));
- }
- /**
- * Divide this fraction by the passed {@code value}, returning
- * the result in reduced form.
- *
- * @param value Value to divide by
- * @return {@code this / value}.
- * @throws ArithmeticException if the value to divide by is zero
- */
- public BigFraction divide(final long value) {
- return divide(BigInteger.valueOf(value));
- }
- /**
- * Divide this fraction by the passed {@code value}, returning
- * the result in reduced form.
- *
- * @param value Value to divide by
- * @return {@code this / value}.
- * @throws ArithmeticException if the value to divide by is zero
- */
- public BigFraction divide(final BigInteger value) {
- if (value.signum() == 0) {
- throw new FractionException(FractionException.ERROR_DIVIDE_BY_ZERO);
- }
- if (isZero()) {
- return ZERO;
- }
- return new BigFraction(numerator, denominator.multiply(value));
- }
- /**
- * Divide this fraction by the passed {@code value}, returning
- * the result in reduced form.
- *
- * @param value Value to divide by
- * @return {@code this / value}.
- * @throws ArithmeticException if the value to divide by is zero
- */
- @Override
- public BigFraction divide(final BigFraction value) {
- if (value.isZero()) {
- throw new FractionException(FractionException.ERROR_DIVIDE_BY_ZERO);
- }
- if (isZero()) {
- return ZERO;
- }
- // Multiply by reciprocal
- return new BigFraction(numerator.multiply(value.denominator),
- denominator.multiply(value.numerator));
- }
- /**
- * Returns a {@code BigFraction} whose value is
- * <code>this<sup>exponent</sup></code>, returning the result in reduced form.
- *
- * @param exponent exponent to which this {@code BigFraction} is to be raised.
- * @return <code>this<sup>exponent</sup></code>.
- * @throws ArithmeticException if the intermediate result would overflow.
- */
- @Override
- public BigFraction pow(final int exponent) {
- if (exponent == 1) {
- return this;
- }
- if (exponent == 0) {
- return ONE;
- }
- if (isZero()) {
- if (exponent < 0) {
- throw new FractionException(FractionException.ERROR_ZERO_DENOMINATOR);
- }
- return ZERO;
- }
- if (exponent > 0) {
- return new BigFraction(numerator.pow(exponent),
- denominator.pow(exponent));
- }
- if (exponent == -1) {
- return this.reciprocal();
- }
- if (exponent == Integer.MIN_VALUE) {
- // MIN_VALUE can't be negated
- return new BigFraction(denominator.pow(Integer.MAX_VALUE).multiply(denominator),
- numerator.pow(Integer.MAX_VALUE).multiply(numerator));
- }
- // Note: Raise the BigIntegers to the power and then reduce.
- // The supported range for BigInteger is currently
- // +/-2^(Integer.MAX_VALUE) exclusive thus larger
- // exponents (long, BigInteger) are currently not supported.
- return new BigFraction(denominator.pow(-exponent),
- numerator.pow(-exponent));
- }
- /**
- * Returns the {@code String} representing this fraction.
- * Uses:
- * <ul>
- * <li>{@code "0"} if {@code numerator} is zero.
- * <li>{@code "numerator"} if {@code denominator} is one.
- * <li>{@code "numerator / denominator"} for all other cases.
- * </ul>
- *
- * @return a string representation of the fraction.
- */
- @Override
- public String toString() {
- final String str;
- if (isZero()) {
- str = "0";
- } else if (BigInteger.ONE.equals(denominator)) {
- str = numerator.toString();
- } else {
- str = numerator + " / " + denominator;
- }
- return str;
- }
- /**
- * Compares this object with the specified object for order using the signed magnitude.
- *
- * @param other {@inheritDoc}
- * @return {@inheritDoc}
- */
- @Override
- public int compareTo(final BigFraction other) {
- final int lhsSigNum = signum();
- final int rhsSigNum = other.signum();
- if (lhsSigNum != rhsSigNum) {
- return (lhsSigNum > rhsSigNum) ? 1 : -1;
- }
- // Same sign.
- // Avoid a multiply if both fractions are zero
- if (lhsSigNum == 0) {
- return 0;
- }
- // Compare absolute magnitude
- final BigInteger nOd = numerator.abs().multiply(other.denominator.abs());
- final BigInteger dOn = denominator.abs().multiply(other.numerator.abs());
- return nOd.compareTo(dOn);
- }
- /**
- * Test for equality with another object. If the other object is a {@code Fraction} then a
- * comparison is made of the sign and magnitude; otherwise {@code false} is returned.
- *
- * @param other {@inheritDoc}
- * @return {@inheritDoc}
- */
- @Override
- public boolean equals(final Object other) {
- if (this == other) {
- return true;
- }
- if (other instanceof BigFraction) {
- // Since fractions are always in lowest terms, numerators and
- // denominators can be compared directly for equality.
- final BigFraction rhs = (BigFraction) other;
- if (signum() == rhs.signum()) {
- return numerator.abs().equals(rhs.numerator.abs()) &&
- denominator.abs().equals(rhs.denominator.abs());
- }
- }
- return false;
- }
- @Override
- public int hashCode() {
- // Incorporate the sign and absolute values of the numerator and denominator.
- // Equivalent to:
- // int hash = 1;
- // hash = 31 * hash + numerator.abs().hashCode();
- // hash = 31 * hash + denominator.abs().hashCode();
- // hash = hash * signum()
- // Note: BigInteger.hashCode() * BigInteger.signum() == BigInteger.abs().hashCode().
- final int numS = numerator.signum();
- final int denS = denominator.signum();
- return (31 * (31 + numerator.hashCode() * numS) + denominator.hashCode() * denS) * numS * denS;
- }
- /**
- * Calculates the sign bit, the biased exponent and the significand for a
- * binary floating-point representation of this {@code BigFraction}
- * according to the IEEE 754 standard, and encodes these values into a {@code long}
- * variable. The representative bits are arranged adjacent to each other and
- * placed at the low-order end of the returned {@code long} value, with the
- * least significant bits used for the significand, the next more
- * significant bits for the exponent, and next more significant bit for the
- * sign.
- *
- * <p>Warning: The arguments are not validated.
- *
- * @param exponentLength the number of bits allowed for the exponent; must be
- * between 1 and 32 (inclusive), and must not be greater
- * than {@code 63 - significandLength}
- * @param significandLength the number of bits allowed for the significand
- * (excluding the implicit leading 1-bit in
- * normalized numbers, e.g. 52 for a double-precision
- * floating-point number); must be between 1 and
- * {@code 63 - exponentLength} (inclusive)
- * @return the bits of an IEEE 754 binary floating-point representation of
- * this fraction encoded in a {@code long}, as described above.
- */
- private long toFloatingPointBits(int exponentLength, int significandLength) {
- // Assume the following conditions:
- //assert exponentLength >= 1;
- //assert exponentLength <= 32;
- //assert significandLength >= 1;
- //assert significandLength <= 63 - exponentLength;
- if (isZero()) {
- return 0L;
- }
- final long sign = (numerator.signum() * denominator.signum()) == -1 ? 1L : 0L;
- final BigInteger positiveNumerator = numerator.abs();
- final BigInteger positiveDenominator = denominator.abs();
- /*
- * The most significant 1-bit of a non-zero number is not explicitly
- * stored in the significand of an IEEE 754 normalized binary
- * floating-point number, so we need to round the value of this fraction
- * to (significandLength + 1) bits. In order to do this, we calculate
- * the most significant (significandLength + 2) bits, and then, based on
- * the least significant of those bits, find out whether we need to
- * round up or down.
- *
- * First, we'll remove all powers of 2 from the denominator because they
- * are not relevant for the significand of the prospective binary
- * floating-point value.
- */
- final int denRightShift = positiveDenominator.getLowestSetBit();
- final BigInteger divisor = positiveDenominator.shiftRight(denRightShift);
- /*
- * Now, we're going to calculate the (significandLength + 2) most
- * significant bits of the fraction's value using integer division. To
- * guarantee that the quotient of the division has at least
- * (significandLength + 2) bits, the bit length of the dividend must
- * exceed that of the divisor by at least that amount.
- *
- * If the denominator has prime factors other than 2, i.e. if the
- * divisor was not reduced to 1, an excess of exactly
- * (significandLength + 2) bits is sufficient, because the knowledge
- * that the fractional part of the precise quotient's binary
- * representation does not terminate is enough information to resolve
- * cases where the most significant (significandLength + 2) bits alone
- * are not conclusive.
- *
- * Otherwise, the quotient must be calculated exactly and the bit length
- * of the numerator can only be reduced as long as no precision is lost
- * in the process (meaning it can have powers of 2 removed, like the
- * denominator).
- */
- int numRightShift = positiveNumerator.bitLength() - divisor.bitLength() - (significandLength + 2);
- if (numRightShift > 0 &&
- divisor.equals(BigInteger.ONE)) {
- numRightShift = Math.min(numRightShift, positiveNumerator.getLowestSetBit());
- }
- final BigInteger dividend = positiveNumerator.shiftRight(numRightShift);
- final BigInteger quotient = dividend.divide(divisor);
- int quotRightShift = quotient.bitLength() - (significandLength + 1);
- long significand = roundAndRightShift(
- quotient,
- quotRightShift,
- !divisor.equals(BigInteger.ONE)
- ).longValue();
- /*
- * If the significand had to be rounded up, this could have caused the
- * bit length of the significand to increase by one.
- */
- if ((significand & (1L << (significandLength + 1))) != 0) {
- significand >>= 1;
- quotRightShift++;
- }
- /*
- * Now comes the exponent. The absolute value of this fraction based on
- * the current local variables is:
- *
- * significand * 2^(numRightShift - denRightShift + quotRightShift)
- *
- * To get the unbiased exponent for the floating-point value, we need to
- * add (significandLength) to the above exponent, because all but the
- * most significant bit of the significand will be treated as a
- * fractional part. To convert the unbiased exponent to a biased
- * exponent, we also need to add the exponent bias.
- */
- final int exponentBias = (1 << (exponentLength - 1)) - 1;
- long exponent = (long) numRightShift - denRightShift + quotRightShift + significandLength + exponentBias;
- final long maxExponent = (1L << exponentLength) - 1L; //special exponent for infinities and NaN
- if (exponent >= maxExponent) { //infinity
- exponent = maxExponent;
- significand = 0L;
- } else if (exponent > 0) { //normalized number
- significand &= -1L >>> (64 - significandLength); //remove implicit leading 1-bit
- } else { //smaller than the smallest normalized number
- /*
- * We need to round the quotient to fewer than
- * (significandLength + 1) bits. This must be done with the original
- * quotient and not with the current significand, because the loss
- * of precision in the previous rounding might cause a rounding of
- * the current significand's value to produce a different result
- * than a rounding of the original quotient.
- *
- * So we find out how many high-order bits from the quotient we can
- * transfer into the significand. The absolute value of the fraction
- * is:
- *
- * quotient * 2^(numRightShift - denRightShift)
- *
- * To get the significand, we need to right shift the quotient so
- * that the above exponent becomes (1 - exponentBias - significandLength)
- * (the unbiased exponent of a subnormal floating-point number is
- * defined as equivalent to the minimum unbiased exponent of a
- * normalized floating-point number, and (- significandLength)
- * because the significand will be treated as the fractional part).
- */
- significand = roundAndRightShift(quotient,
- (1 - exponentBias - significandLength) - (numRightShift - denRightShift),
- !divisor.equals(BigInteger.ONE)).longValue();
- exponent = 0L;
- /*
- * Note: It is possible that an otherwise subnormal number will
- * round up to the smallest normal number. However, this special
- * case does not need to be treated separately, because the
- * overflowing highest-order bit of the significand will then simply
- * become the lowest-order bit of the exponent, increasing the
- * exponent from 0 to 1 and thus establishing the implicity of the
- * leading 1-bit.
- */
- }
- return (sign << (significandLength + exponentLength)) |
- (exponent << significandLength) |
- significand;
- }
- /**
- * Rounds an integer to the specified power of two (i.e. the minimum number of
- * low-order bits that must be zero) and performs a right-shift by this
- * amount. The rounding mode applied is round to nearest, with ties rounding
- * to even (meaning the prospective least significant bit must be zero). The
- * number can optionally be treated as though it contained at
- * least one 0-bit and one 1-bit in its fractional part, to influence the result in cases
- * that would otherwise be a tie.
- * @param value the number to round and right-shift
- * @param bits the power of two to which to round; must be positive
- * @param hasFractionalBits whether the number should be treated as though
- * it contained a non-zero fractional part
- * @return a {@code BigInteger} as described above
- */
- private static BigInteger roundAndRightShift(BigInteger value, int bits, boolean hasFractionalBits) {
- // Assumptions:
- // assert bits > 0
- BigInteger result = value.shiftRight(bits);
- if (value.testBit(bits - 1) &&
- (hasFractionalBits ||
- value.getLowestSetBit() < bits - 1 ||
- value.testBit(bits))) {
- result = result.add(BigInteger.ONE); //round up
- }
- return result;
- }
- }