ContinuedFraction.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.numbers.fraction;
- import java.util.function.Supplier;
- import org.apache.commons.numbers.fraction.GeneralizedContinuedFraction.Coefficient;
- /**
- * Provides a generic means to evaluate
- * <a href="https://mathworld.wolfram.com/ContinuedFraction.html">continued fractions</a>.
- *
- * <p>The continued fraction uses the following form for the numerator ({@code a}) and
- * denominator ({@code b}) coefficients:
- * <pre>
- * a1
- * b0 + ------------------
- * b1 + a2
- * -------------
- * b2 + a3
- * --------
- * b3 + ...
- * </pre>
- *
- * <p>Subclasses must provide the {@link #getA(int,double) a} and {@link #getB(int,double) b}
- * coefficients to evaluate the continued fraction.
- *
- * <p>This class allows evaluation of the fraction for a specified evaluation point {@code x};
- * the point can be used to express the values of the coefficients.
- * Evaluation of a continued fraction from a generator of the coefficients can be performed using
- * {@link GeneralizedContinuedFraction}. This may be preferred if the coefficients can be computed
- * with updates to the previous coefficients.
- */
- public abstract class ContinuedFraction {
- /** Create an instance. */
- public ContinuedFraction() {}
- /**
- * Defines the <a href="https://mathworld.wolfram.com/ContinuedFraction.html">
- * {@code n}-th "a" coefficient</a> of the continued fraction.
- *
- * @param n Index of the coefficient to retrieve.
- * @param x Evaluation point.
- * @return the coefficient <code>a<sub>n</sub></code>.
- */
- protected abstract double getA(int n, double x);
- /**
- * Defines the <a href="https://mathworld.wolfram.com/ContinuedFraction.html">
- * {@code n}-th "b" coefficient</a> of the continued fraction.
- *
- * @param n Index of the coefficient to retrieve.
- * @param x Evaluation point.
- * @return the coefficient <code>b<sub>n</sub></code>.
- */
- protected abstract double getB(int n, double x);
- /**
- * Evaluates the continued fraction.
- *
- * @param x the evaluation point.
- * @param epsilon Maximum relative error allowed.
- * @return the value of the continued fraction evaluated at {@code x}.
- * @throws ArithmeticException if the algorithm fails to converge.
- * @throws ArithmeticException if the maximal number of iterations is reached
- * before the expected convergence is achieved.
- *
- * @see #evaluate(double,double,int)
- */
- public double evaluate(double x, double epsilon) {
- return evaluate(x, epsilon, GeneralizedContinuedFraction.DEFAULT_ITERATIONS);
- }
- /**
- * Evaluates the continued fraction.
- * <p>
- * The implementation of this method is based on the modified Lentz algorithm as described
- * on page 508 in:
- * </p>
- *
- * <ul>
- * <li>
- * I. J. Thompson, A. R. Barnett (1986).
- * "Coulomb and Bessel Functions of Complex Arguments and Order."
- * Journal of Computational Physics 64, 490-509.
- * <a target="_blank" href="https://www.fresco.org.uk/papers/Thompson-JCP64p490.pdf">
- * https://www.fresco.org.uk/papers/Thompson-JCP64p490.pdf</a>
- * </li>
- * </ul>
- *
- * @param x Point at which to evaluate the continued fraction.
- * @param epsilon Maximum relative error allowed.
- * @param maxIterations Maximum number of iterations.
- * @return the value of the continued fraction evaluated at {@code x}.
- * @throws ArithmeticException if the algorithm fails to converge.
- * @throws ArithmeticException if the maximal number of iterations is reached
- * before the expected convergence is achieved.
- */
- public double evaluate(double x, double epsilon, int maxIterations) {
- // Delegate to GeneralizedContinuedFraction
- // Get the first coefficient
- final double b0 = getB(0, x);
- // Generate coefficients from (a1,b1)
- final Supplier<Coefficient> gen = new Supplier<Coefficient>() {
- /** Coefficient index. */
- private int n;
- @Override
- public Coefficient get() {
- n++;
- final double a = getA(n, x);
- final double b = getB(n, x);
- return Coefficient.of(a, b);
- }
- };
- // Invoke appropriate method based on magnitude of first term.
- // If b0 is too small or zero it is set to a non-zero small number to allow
- // magnitude updates. Avoid this by adding b0 at the end if b0 is small.
- //
- // This handles the use case of a negligible initial term. If b1 is also small
- // then the evaluation starting at b0 or b1 may converge poorly.
- // One solution is to manually compute the convergent until it is not small
- // and then evaluate the fraction from the next term:
- // h1 = b0 + a1 / b1
- // h2 = b0 + a1 / (b1 + a2 / b2)
- // ...
- // hn not 'small', start generator at (n+1):
- // value = GeneralizedContinuedFraction.value(hn, gen)
- // This solution is not implemented to avoid recursive complexity.
- if (Math.abs(b0) < GeneralizedContinuedFraction.SMALL) {
- // Updates from initial convergent b1 and computes:
- // b0 + a1 / [ b1 + a2 / (b2 + ... ) ]
- return GeneralizedContinuedFraction.value(b0, gen, epsilon, maxIterations);
- }
- // Use the package-private evaluate method.
- // Calling GeneralizedContinuedFraction.value(gen, epsilon, maxIterations)
- // requires the generator to start from (a0,b0) and repeats computation of b0
- // and wastes computation of a0.
- // Updates from initial convergent b0:
- // b0 + a1 / (b1 + ... )
- return GeneralizedContinuedFraction.evaluate(b0, gen, epsilon, maxIterations);
- }
- }