IncompleteBeta.java
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.numbers.gamma;
/**
* <a href="https://mathworld.wolfram.com/IncompleteBetaFunction.html">
* Incomplete Beta function</a>.
*
* <p>\[ B_x(a,b) = \int_0^x t^{a-1}\,(1-t)^{b-1}\,dt \]
*
* <p>This code has been adapted from the <a href="https://www.boost.org/">Boost</a>
* {@code c++} implementation {@code <boost/math/special_functions/beta.hpp>}.
*
* @see
* <a href="https://www.boost.org/doc/libs/1_77_0/libs/math/doc/html/math_toolkit/sf_beta/ibeta_function.html">
* Boost C++ Incomplete Beta functions</a>
* @since 1.1
*/
public final class IncompleteBeta {
/** Private constructor. */
private IncompleteBeta() {
// intentionally empty.
}
/**
* Computes the value of the
* <a href="https://mathworld.wolfram.com/IncompleteBetaFunction.html">
* incomplete beta function</a> B(x, a, b).
*
* <p>\[ B_x(a,b) = \int_0^x t^{a-1}\,(1-t)^{b-1}\,dt \]
*
* @param x Value.
* @param a Parameter {@code a}.
* @param b Parameter {@code b}.
* @return the incomplete beta function \( B_x(a, b) \).
* @throws ArithmeticException if the series evaluation fails to converge.
*/
public static double value(double x,
double a,
double b) {
return BoostBeta.beta(a, b, x);
}
/**
* Computes the value of the
* <a href="https://mathworld.wolfram.com/IncompleteBetaFunction.html">
* incomplete beta function</a> B(x, a, b).
*
* <p>\[ B_x(a,b) = \int_0^x t^{a-1}\,(1-t)^{b-1}\,dt \]
*
* @param x the value.
* @param a Parameter {@code a}.
* @param b Parameter {@code b}.
* @param epsilon Tolerance in series evaluation.
* @param maxIterations Maximum number of iterations in series evaluation.
* @return the incomplete beta function \( B_x(a, b) \).
* @throws ArithmeticException if the series evaluation fails to converge.
*/
public static double value(double x,
final double a,
final double b,
double epsilon,
int maxIterations) {
return BoostBeta.beta(a, b, x, new Policy(epsilon, maxIterations));
}
/**
* Computes the complement of the
* <a href="https://mathworld.wolfram.com/IncompleteBetaFunction.html">
* incomplete beta function</a> B(x, a, b).
*
* <p>\[ B(a, b) - B_x(a,b) = B_{1-x}(b, a) \]
*
* <p>where \( B(a, b) \) is the beta function.
*
* @param x Value.
* @param a Parameter {@code a}.
* @param b Parameter {@code b}.
* @return the complement of the incomplete beta function \( B(a, b) - B_x(a, b) \).
* @throws ArithmeticException if the series evaluation fails to converge.
*/
public static double complement(double x,
double a,
double b) {
return BoostBeta.betac(a, b, x);
}
/**
* Computes the complement of the
* <a href="https://mathworld.wolfram.com/IncompleteBetaFunction.html">
* incomplete beta function</a> B(x, a, b).
*
* <p>\[ B(a, b) - B_x(a,b) = B_{1-x}(b, a) \]
*
* <p>where \( B(a, b) \) is the beta function.
*
* @param x the value.
* @param a Parameter {@code a}.
* @param b Parameter {@code b}.
* @param epsilon Tolerance in series evaluation.
* @param maxIterations Maximum number of iterations in series evaluation.
* @return the complement of the incomplete beta function \( B(a, b) - B_x(a, b) \).
* @throws ArithmeticException if the series evaluation fails to converge.
*/
public static double complement(double x,
final double a,
final double b,
double epsilon,
int maxIterations) {
return BoostBeta.betac(a, b, x, new Policy(epsilon, maxIterations));
}
}