RegularizedBeta.java
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.numbers.gamma;
/**
* <a href="https://mathworld.wolfram.com/RegularizedBetaFunction.html">
* Regularized Beta function</a>.
*
* <p>\[ I_x(a,b) = \frac{1}{B(a, b)} \int_0^x t^{a-1}\,(1-t)^{b-1}\,dt \]
*
* <p>where \( B(a, b) \) is the beta function.
*
* <p>This code has been adapted from the <a href="https://www.boost.org/">Boost</a>
* {@code c++} implementation {@code <boost/math/special_functions/beta.hpp>}.
*
* @see
* <a href="https://www.boost.org/doc/libs/1_77_0/libs/math/doc/html/math_toolkit/sf_beta/ibeta_function.html">
* Boost C++ Incomplete Beta functions</a>
*/
public final class RegularizedBeta {
/** Private constructor. */
private RegularizedBeta() {
// intentionally empty.
}
/**
* Computes the value of the
* <a href="https://mathworld.wolfram.com/RegularizedBetaFunction.html">
* regularized beta function</a> I(x, a, b).
*
* <p>\[ I_x(a,b) = \frac{1}{B(a, b)} \int_0^x t^{a-1}\,(1-t)^{b-1}\,dt \]
*
* <p>where \( B(a, b) \) is the beta function.
*
* @param x Value.
* @param a Parameter {@code a}.
* @param b Parameter {@code b}.
* @return the regularized beta function \( I_x(a, b) \).
* @throws ArithmeticException if the series evaluation fails to converge.
*/
public static double value(double x,
double a,
double b) {
return BoostBeta.ibeta(a, b, x);
}
/**
* Computes the value of the
* <a href="https://mathworld.wolfram.com/RegularizedBetaFunction.html">
* regularized beta function</a> I(x, a, b).
*
* <p>\[ I_x(a,b) = \frac{1}{B(a, b)} \int_0^x t^{a-1}\,(1-t)^{b-1}\,dt \]
*
* <p>where \( B(a, b) \) is the beta function.
*
* @param x the value.
* @param a Parameter {@code a}.
* @param b Parameter {@code b}.
* @param epsilon Tolerance in series evaluation.
* @param maxIterations Maximum number of iterations in series evaluation.
* @return the regularized beta function \( I_x(a, b) \).
* @throws ArithmeticException if the series evaluation fails to converge.
*/
public static double value(double x,
final double a,
final double b,
double epsilon,
int maxIterations) {
return BoostBeta.ibeta(a, b, x, new Policy(epsilon, maxIterations));
}
/**
* Computes the complement of the
* <a href="https://mathworld.wolfram.com/RegularizedBetaFunction.html">
* regularized beta function</a> I(x, a, b).
*
* <p>\[ 1 - I_x(a,b) = I_{1-x}(b, a) \]
*
* @param x Value.
* @param a Parameter {@code a}.
* @param b Parameter {@code b}.
* @return the complement of the regularized beta function \( 1 - I_x(a, b) \).
* @throws ArithmeticException if the series evaluation fails to converge.
* @since 1.1
*/
public static double complement(double x,
double a,
double b) {
return BoostBeta.ibetac(a, b, x);
}
/**
* Computes the complement of the
* <a href="https://mathworld.wolfram.com/RegularizedBetaFunction.html">
* regularized beta function</a> I(x, a, b).
*
* <p>\[ 1 - I_x(a,b) = I_{1-x}(b, a) \]
*
* @param x the value.
* @param a Parameter {@code a}.
* @param b Parameter {@code b}.
* @param epsilon Tolerance in series evaluation.
* @param maxIterations Maximum number of iterations in series evaluation.
* @return the complement of the regularized beta function \( 1 - I_x(a, b) \).
* @throws ArithmeticException if the series evaluation fails to converge.
* @since 1.1
*/
public static double complement(double x,
final double a,
final double b,
double epsilon,
int maxIterations) {
return BoostBeta.ibetac(a, b, x, new Policy(epsilon, maxIterations));
}
/**
* Computes the derivative of the
* <a href="https://mathworld.wolfram.com/RegularizedBetaFunction.html">
* regularized beta function</a> I(x, a, b).
*
* <p>\[ \frac{\delta}{\delta x} I_x(a,b) = \frac{(1-x)^{b-1} x^{a-1}}{B(a, b)} \]
*
* <p>where \( B(a, b) \) is the beta function.
*
* <p>This function has uses in some statistical distributions.
*
* @param x Value.
* @param a Parameter {@code a}.
* @param b Parameter {@code b}.
* @return the derivative of the regularized beta function \( I_x(a, b) \).
* @throws ArithmeticException if the series evaluation fails to converge.
* @since 1.1
*/
public static double derivative(double x,
double a,
double b) {
return BoostBeta.ibetaDerivative(a, b, x);
}
}