RegularizedGamma.java
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.numbers.gamma;
/**
* <a href="https://mathworld.wolfram.com/RegularizedGammaFunction.html">
* Regularized Gamma functions</a>.
*
* <p>By definition, the lower and upper regularized gamma functions satisfy:
*
* <p>\[ 1 = P(a, x) + Q(a, x) \]
*
* <p>This code has been adapted from the <a href="https://www.boost.org/">Boost</a>
* {@code c++} implementation {@code <boost/math/special_functions/gamma.hpp>}.
*
* @see
* <a href="https://www.boost.org/doc/libs/1_77_0/libs/math/doc/html/math_toolkit/sf_gamma/igamma.html">
* Boost C++ Incomplete Gamma functions</a>
*/
public final class RegularizedGamma {
/** Private constructor. */
private RegularizedGamma() {
// intentionally empty.
}
/**
* <a href="http://mathworld.wolfram.com/RegularizedGammaFunction.html">
* Lower regularized Gamma function</a> \( P(a, x) \).
*
* <p>\[ P(a,x) = 1 - Q(a,x) = \frac{\gamma(a,x)}{\Gamma(a)} = \frac{1}{\Gamma(a)} \int_0^x t^{a-1}\,e^{-t}\,dt \]
*/
public static final class P {
/** Prevent instantiation. */
private P() {}
/**
* Computes the lower regularized gamma function \( P(a, x) \).
*
* @param a Argument.
* @param x Argument.
* @return \( P(a, x) \).
* @throws ArithmeticException if the continued fraction fails to converge.
*/
public static double value(double a,
double x) {
return BoostGamma.gammaP(a, x);
}
/**
* Computes the lower regularized gamma function \( P(a, x) \).
*
* @param a Argument.
* @param x Argument.
* @param epsilon Tolerance in series evaluation.
* @param maxIterations Maximum number of iterations in series evaluation.
* @return \( P(a, x) \).
* @throws ArithmeticException if the series evaluation fails to converge.
*/
public static double value(double a,
double x,
double epsilon,
int maxIterations) {
return BoostGamma.gammaP(a, x, new Policy(epsilon, maxIterations));
}
/**
* Computes the derivative of the lower regularized gamma function \( P(a, x) \).
*
* <p>\[ \frac{\delta}{\delta x} P(a,x) = \frac{e^{-x} x^{a-1}}{\Gamma(a)} \]
*
* <p>This function has uses in some statistical distributions.
*
* @param a Argument.
* @param x Argument.
* @return derivative of \( P(a,x) \) with respect to x.
* @since 1.1
*/
public static double derivative(double a,
double x) {
return BoostGamma.gammaPDerivative(a, x);
}
}
/**
* <a href="http://mathworld.wolfram.com/RegularizedGammaFunction.html">
* Upper regularized Gamma function</a> \( Q(a, x) \).
*
* <p>\[ Q(a,x) = 1 - P(a,x) = \frac{\Gamma(a,x)}{\Gamma(a)} = \frac{1}{\Gamma(a)} \int_x^{\infty} t^{a-1}\,e^{-t}\,dt \]
*/
public static final class Q {
/** Prevent instantiation. */
private Q() {}
/**
* Computes the upper regularized gamma function \( Q(a, x) \).
*
* @param a Argument.
* @param x Argument.
* @return \( Q(a, x) \).
* @throws ArithmeticException if the series evaluation fails to converge.
*/
public static double value(double a,
double x) {
return BoostGamma.gammaQ(a, x);
}
/**
* Computes the upper regularized gamma function \( Q(a, x) \).
*
* @param a Argument.
* @param x Argument.
* @param epsilon Tolerance in series evaluation.
* @param maxIterations Maximum number of iterations in series evaluation.
* @return \( Q(a, x) \).
* @throws ArithmeticException if the series evaluation fails to converge.
*/
public static double value(final double a,
double x,
double epsilon,
int maxIterations) {
return BoostGamma.gammaQ(a, x, new Policy(epsilon, maxIterations));
}
/**
* Computes the derivative of the upper regularized gamma function \( Q(a, x) \).
*
* <p>\[ \frac{\delta}{\delta x} Q(a,x) = -\frac{e^{-x} x^{a-1}}{\Gamma(a)} \]
*
* <p>This function has uses in some statistical distributions.
*
* @param a Argument.
* @param x Argument.
* @return derivative of \( Q(a,x) \) with respect to x.
* @since 1.1
*/
public static double derivative(double a,
double x) {
return -BoostGamma.gammaPDerivative(a, x);
}
}
}