001/* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017package org.apache.commons.numbers.gamma; 018 019/** 020 * <a href="http://mathworld.wolfram.com/Erfc.html">Complementary error function</a>. 021 */ 022public final class Erfc { 023 /** The threshold value for returning the extreme value. */ 024 private static final double EXTREME_VALUE_BOUND = 40; 025 026 /** Private constructor. */ 027 private Erfc() { 028 // intentionally empty. 029 } 030 031 /** 032 * <p> 033 * This implementation computes erfc(x) using the 034 * {@link RegularizedGamma.Q#value(double, double, double, int) regularized gamma function}, 035 * following <a href="http://mathworld.wolfram.com/Erf.html">Erf</a>, equation (3). 036 * </p> 037 * 038 * <p> 039 * The value returned is always between 0 and 2 (inclusive). 040 * If {@code abs(x) > 40}, then {@code erf(x)} is indistinguishable from 041 * either 0 or 2 at {@code double} precision, so the appropriate extreme 042 * value is returned. 043 * </p> 044 * 045 * @param x Value. 046 * @return the complementary error function. 047 * @throws ArithmeticException if the algorithm fails to converge. 048 * 049 * @see RegularizedGamma.Q#value(double, double, double, int) 050 */ 051 public static double value(double x) { 052 if (Math.abs(x) > EXTREME_VALUE_BOUND) { 053 return x > 0 ? 0 : 2; 054 } 055 final double ret = RegularizedGamma.Q.value(0.5, x * x, 1e-15, 10000); 056 return x < 0 ? 057 2 - ret : 058 ret; 059 } 060} 061