Quaternion.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.numbers.quaternion;
- import java.util.Arrays;
- import java.util.function.ToDoubleFunction;
- import java.util.function.BiPredicate;
- import java.io.Serializable;
- import org.apache.commons.numbers.core.Precision;
- /**
- * This class implements <a href="http://mathworld.wolfram.com/Quaternion.html">
- * quaternions</a> (Hamilton's hypercomplex numbers).
- *
- * <p>Wherever quaternion components are listed in sequence, this class follows the
- * convention of placing the scalar ({@code w}) component first, e.g. [{@code w, x, y, z}].
- * Other libraries and textbooks may place the {@code w} component last.</p>
- *
- * <p>Instances of this class are guaranteed to be immutable.</p>
- */
- public final class Quaternion implements Serializable {
- /** Zero quaternion. */
- public static final Quaternion ZERO = of(0, 0, 0, 0);
- /** Identity quaternion. */
- public static final Quaternion ONE = new Quaternion(Type.POSITIVE_POLAR_FORM, 1, 0, 0, 0);
- /** i. */
- public static final Quaternion I = new Quaternion(Type.POSITIVE_POLAR_FORM, 0, 1, 0, 0);
- /** j. */
- public static final Quaternion J = new Quaternion(Type.POSITIVE_POLAR_FORM, 0, 0, 1, 0);
- /** k. */
- public static final Quaternion K = new Quaternion(Type.POSITIVE_POLAR_FORM, 0, 0, 0, 1);
- /** Serializable version identifier. */
- private static final long serialVersionUID = 20170118L;
- /** Error message. */
- private static final String ILLEGAL_NORM_MSG = "Illegal norm: ";
- /** {@link #toString() String representation}. */
- private static final String FORMAT_START = "[";
- /** {@link #toString() String representation}. */
- private static final String FORMAT_END = "]";
- /** {@link #toString() String representation}. */
- private static final String FORMAT_SEP = " ";
- /** The number of dimensions for the vector part of the quaternion. */
- private static final int VECTOR_DIMENSIONS = 3;
- /** The number of parts when parsing a text representation of the quaternion. */
- private static final int NUMBER_OF_PARTS = 4;
- /** For enabling specialized method implementations. */
- private final Type type;
- /** First component (scalar part). */
- private final double w;
- /** Second component (first vector part). */
- private final double x;
- /** Third component (second vector part). */
- private final double y;
- /** Fourth component (third vector part). */
- private final double z;
- /**
- * For enabling optimized implementations.
- */
- private enum Type {
- /** Default implementation. */
- DEFAULT(Default.NORMSQ,
- Default.NORM,
- Default.IS_UNIT),
- /** Quaternion has unit norm. */
- NORMALIZED(Normalized.NORM,
- Normalized.NORM,
- Normalized.IS_UNIT),
- /** Quaternion has positive scalar part. */
- POSITIVE_POLAR_FORM(Normalized.NORM,
- Normalized.NORM,
- Normalized.IS_UNIT);
- /** {@link Quaternion#normSq()}. */
- private final ToDoubleFunction<Quaternion> normSq;
- /** {@link Quaternion#norm()}. */
- private final ToDoubleFunction<Quaternion> norm;
- /** {@link Quaternion#isUnit(double)}. */
- private final BiPredicate<Quaternion, Double> testIsUnit;
- /** Default implementations. */
- private static final class Default {
- /** {@link Quaternion#normSq()}. */
- static final ToDoubleFunction<Quaternion> NORMSQ = q ->
- q.w * q.w + q.x * q.x + q.y * q.y + q.z * q.z;
- /** {@link Quaternion#norm()}. */
- private static final ToDoubleFunction<Quaternion> NORM = q ->
- Math.sqrt(NORMSQ.applyAsDouble(q));
- /** {@link Quaternion#isUnit(double)}. */
- private static final BiPredicate<Quaternion, Double> IS_UNIT = (q, eps) ->
- Precision.equals(NORM.applyAsDouble(q), 1d, eps);
- }
- /** Implementations for normalized quaternions. */
- private static final class Normalized {
- /** {@link Quaternion#norm()} returns 1. */
- static final ToDoubleFunction<Quaternion> NORM = q -> 1;
- /** {@link Quaternion#isUnit(double)} returns 1. */
- static final BiPredicate<Quaternion, Double> IS_UNIT = (q, eps) -> true;
- }
- /**
- * @param normSq {@code normSq} method.
- * @param norm {@code norm} method.
- * @param isUnit {@code isUnit} method.
- */
- Type(ToDoubleFunction<Quaternion> normSq,
- ToDoubleFunction<Quaternion> norm,
- BiPredicate<Quaternion, Double> isUnit) {
- this.normSq = normSq;
- this.norm = norm;
- this.testIsUnit = isUnit;
- }
- /**
- * @param q Quaternion.
- * @return the norm squared.
- */
- double normSq(Quaternion q) {
- return normSq.applyAsDouble(q);
- }
- /**
- * @param q Quaternion.
- * @return the norm.
- */
- double norm(Quaternion q) {
- return norm.applyAsDouble(q);
- }
- /**
- * @param q Quaternion.
- * @param eps Tolerance.
- * @return whether {@code q} has unit norm within the allowed tolerance.
- */
- boolean isUnit(Quaternion q,
- double eps) {
- return testIsUnit.test(q, eps);
- }
- }
- /**
- * Builds a quaternion from its components.
- *
- * @param type Quaternion type.
- * @param w Scalar component.
- * @param x First vector component.
- * @param y Second vector component.
- * @param z Third vector component.
- */
- private Quaternion(Type type,
- final double w,
- final double x,
- final double y,
- final double z) {
- this.type = type;
- this.w = w;
- this.x = x;
- this.y = y;
- this.z = z;
- }
- /**
- * Copies the given quaternion, but change its {@link Type}.
- *
- * @param type Quaternion type.
- * @param q Quaternion whose components will be copied.
- */
- private Quaternion(Type type,
- Quaternion q) {
- this.type = type;
- w = q.w;
- x = q.x;
- y = q.y;
- z = q.z;
- }
- /**
- * Builds a quaternion from its components.
- *
- * @param w Scalar component.
- * @param x First vector component.
- * @param y Second vector component.
- * @param z Third vector component.
- * @return a quaternion instance.
- */
- public static Quaternion of(final double w,
- final double x,
- final double y,
- final double z) {
- return new Quaternion(Type.DEFAULT,
- w, x, y, z);
- }
- /**
- * Builds a quaternion from scalar and vector parts.
- *
- * @param scalar Scalar part of the quaternion.
- * @param v Components of the vector part of the quaternion.
- * @return a quaternion instance.
- *
- * @throws IllegalArgumentException if the array length is not 3.
- */
- public static Quaternion of(final double scalar,
- final double[] v) {
- if (v.length != VECTOR_DIMENSIONS) {
- throw new IllegalArgumentException("Size of array must be 3");
- }
- return of(scalar, v[0], v[1], v[2]);
- }
- /**
- * Builds a pure quaternion from a vector (assuming that the scalar
- * part is zero).
- *
- * @param v Components of the vector part of the pure quaternion.
- * @return a quaternion instance.
- */
- public static Quaternion of(final double[] v) {
- return of(0, v);
- }
- /**
- * Returns the conjugate of this quaternion number.
- * The conjugate of {@code a + bi + cj + dk} is {@code a - bi -cj -dk}.
- *
- * @return the conjugate of this quaternion object.
- */
- public Quaternion conjugate() {
- return of(w, -x, -y, -z);
- }
- /**
- * Returns the Hamilton product of two quaternions.
- *
- * @param q1 First quaternion.
- * @param q2 Second quaternion.
- * @return the product {@code q1} and {@code q2}, in that order.
- */
- public static Quaternion multiply(final Quaternion q1,
- final Quaternion q2) {
- // Components of the first quaternion.
- final double q1a = q1.w;
- final double q1b = q1.x;
- final double q1c = q1.y;
- final double q1d = q1.z;
- // Components of the second quaternion.
- final double q2a = q2.w;
- final double q2b = q2.x;
- final double q2c = q2.y;
- final double q2d = q2.z;
- // Components of the product.
- final double w = q1a * q2a - q1b * q2b - q1c * q2c - q1d * q2d;
- final double x = q1a * q2b + q1b * q2a + q1c * q2d - q1d * q2c;
- final double y = q1a * q2c - q1b * q2d + q1c * q2a + q1d * q2b;
- final double z = q1a * q2d + q1b * q2c - q1c * q2b + q1d * q2a;
- return of(w, x, y, z);
- }
- /**
- * Returns the Hamilton product of the instance by a quaternion.
- *
- * @param q Quaternion.
- * @return the product of this instance with {@code q}, in that order.
- */
- public Quaternion multiply(final Quaternion q) {
- return multiply(this, q);
- }
- /**
- * Computes the sum of two quaternions.
- *
- * @param q1 Quaternion.
- * @param q2 Quaternion.
- * @return the sum of {@code q1} and {@code q2}.
- */
- public static Quaternion add(final Quaternion q1,
- final Quaternion q2) {
- return of(q1.w + q2.w,
- q1.x + q2.x,
- q1.y + q2.y,
- q1.z + q2.z);
- }
- /**
- * Computes the sum of the instance and another quaternion.
- *
- * @param q Quaternion.
- * @return the sum of this instance and {@code q}.
- */
- public Quaternion add(final Quaternion q) {
- return add(this, q);
- }
- /**
- * Subtracts two quaternions.
- *
- * @param q1 First Quaternion.
- * @param q2 Second quaternion.
- * @return the difference between {@code q1} and {@code q2}.
- */
- public static Quaternion subtract(final Quaternion q1,
- final Quaternion q2) {
- return of(q1.w - q2.w,
- q1.x - q2.x,
- q1.y - q2.y,
- q1.z - q2.z);
- }
- /**
- * Subtracts a quaternion from the instance.
- *
- * @param q Quaternion.
- * @return the difference between this instance and {@code q}.
- */
- public Quaternion subtract(final Quaternion q) {
- return subtract(this, q);
- }
- /**
- * Computes the dot-product of two quaternions.
- *
- * @param q1 Quaternion.
- * @param q2 Quaternion.
- * @return the dot product of {@code q1} and {@code q2}.
- */
- public static double dot(final Quaternion q1,
- final Quaternion q2) {
- return q1.w * q2.w +
- q1.x * q2.x +
- q1.y * q2.y +
- q1.z * q2.z;
- }
- /**
- * Computes the dot-product of the instance by a quaternion.
- *
- * @param q Quaternion.
- * @return the dot product of this instance and {@code q}.
- */
- public double dot(final Quaternion q) {
- return dot(this, q);
- }
- /**
- * Computes the norm of the quaternion.
- *
- * @return the norm.
- */
- public double norm() {
- return type.norm(this);
- }
- /**
- * Computes the square of the norm of the quaternion.
- *
- * @return the square of the norm.
- */
- public double normSq() {
- return type.normSq(this);
- }
- /**
- * Computes the normalized quaternion (the versor of the instance).
- * The norm of the quaternion must not be near zero.
- *
- * @return a normalized quaternion.
- * @throws IllegalStateException if the norm of the quaternion is NaN, infinite,
- * or near zero.
- */
- public Quaternion normalize() {
- switch (type) {
- case NORMALIZED:
- case POSITIVE_POLAR_FORM:
- return this;
- case DEFAULT:
- final double norm = norm();
- if (norm < Precision.SAFE_MIN ||
- !Double.isFinite(norm)) {
- throw new IllegalStateException(ILLEGAL_NORM_MSG + norm);
- }
- final Quaternion unit = divide(norm);
- return w >= 0 ?
- new Quaternion(Type.POSITIVE_POLAR_FORM, unit) :
- new Quaternion(Type.NORMALIZED, unit);
- default:
- throw new IllegalStateException(); // Should never happen.
- }
- }
- /**
- * {@inheritDoc}
- */
- @Override
- public boolean equals(Object other) {
- if (this == other) {
- return true;
- }
- if (other instanceof Quaternion) {
- final Quaternion q = (Quaternion) other;
- return ((Double) w).equals(q.w) &&
- ((Double) x).equals(q.x) &&
- ((Double) y).equals(q.y) &&
- ((Double) z).equals(q.z);
- }
- return false;
- }
- /**
- * {@inheritDoc}
- */
- @Override
- public int hashCode() {
- return Arrays.hashCode(new double[] {w, x, y, z});
- }
- /**
- * Checks whether this instance is equal to another quaternion
- * within a given tolerance.
- *
- * @param q Quaternion with which to compare the current quaternion.
- * @param eps Tolerance.
- * @return {@code true} if the each of the components are equal
- * within the allowed absolute error.
- */
- public boolean equals(final Quaternion q,
- final double eps) {
- return Precision.equals(w, q.w, eps) &&
- Precision.equals(x, q.x, eps) &&
- Precision.equals(y, q.y, eps) &&
- Precision.equals(z, q.z, eps);
- }
- /**
- * Checks whether the instance is a unit quaternion within a given
- * tolerance.
- *
- * @param eps Tolerance (absolute error).
- * @return {@code true} if the norm is 1 within the given tolerance,
- * {@code false} otherwise
- */
- public boolean isUnit(double eps) {
- return type.isUnit(this, eps);
- }
- /**
- * Checks whether the instance is a pure quaternion within a given
- * tolerance.
- *
- * @param eps Tolerance (absolute error).
- * @return {@code true} if the scalar part of the quaternion is zero.
- */
- public boolean isPure(double eps) {
- return Math.abs(w) <= eps;
- }
- /**
- * Returns the polar form of the quaternion.
- *
- * @return the unit quaternion with positive scalar part.
- */
- public Quaternion positivePolarForm() {
- switch (type) {
- case POSITIVE_POLAR_FORM:
- return this;
- case NORMALIZED:
- return w >= 0 ?
- new Quaternion(Type.POSITIVE_POLAR_FORM, this) :
- new Quaternion(Type.POSITIVE_POLAR_FORM, negate());
- case DEFAULT:
- return w >= 0 ?
- normalize() :
- // The quaternion of rotation (normalized quaternion) q and -q
- // are equivalent (i.e. represent the same rotation).
- negate().normalize();
- default:
- throw new IllegalStateException(); // Should never happen.
- }
- }
- /**
- * Returns the opposite of this instance.
- *
- * @return the quaternion for which all components have an opposite
- * sign to this one.
- */
- public Quaternion negate() {
- switch (type) {
- case POSITIVE_POLAR_FORM:
- case NORMALIZED:
- return new Quaternion(Type.NORMALIZED, -w, -x, -y, -z);
- case DEFAULT:
- return new Quaternion(Type.DEFAULT, -w, -x, -y, -z);
- default:
- throw new IllegalStateException(); // Should never happen.
- }
- }
- /**
- * Returns the inverse of this instance.
- * The norm of the quaternion must not be zero.
- *
- * @return the inverse.
- * @throws IllegalStateException if the norm (squared) of the quaternion is NaN,
- * infinite, or near zero.
- */
- public Quaternion inverse() {
- switch (type) {
- case POSITIVE_POLAR_FORM:
- case NORMALIZED:
- return new Quaternion(type, w, -x, -y, -z);
- case DEFAULT:
- final double squareNorm = normSq();
- if (squareNorm < Precision.SAFE_MIN ||
- !Double.isFinite(squareNorm)) {
- throw new IllegalStateException(ILLEGAL_NORM_MSG + Math.sqrt(squareNorm));
- }
- return of(w / squareNorm,
- -x / squareNorm,
- -y / squareNorm,
- -z / squareNorm);
- default:
- throw new IllegalStateException(); // Should never happen.
- }
- }
- /**
- * Gets the first component of the quaternion (scalar part).
- *
- * @return the scalar part.
- */
- public double getW() {
- return w;
- }
- /**
- * Gets the second component of the quaternion (first component
- * of the vector part).
- *
- * @return the first component of the vector part.
- */
- public double getX() {
- return x;
- }
- /**
- * Gets the third component of the quaternion (second component
- * of the vector part).
- *
- * @return the second component of the vector part.
- */
- public double getY() {
- return y;
- }
- /**
- * Gets the fourth component of the quaternion (third component
- * of the vector part).
- *
- * @return the third component of the vector part.
- */
- public double getZ() {
- return z;
- }
- /**
- * Gets the scalar part of the quaternion.
- *
- * @return the scalar part.
- * @see #getW()
- */
- public double getScalarPart() {
- return getW();
- }
- /**
- * Gets the three components of the vector part of the quaternion.
- *
- * @return the vector part.
- * @see #getX()
- * @see #getY()
- * @see #getZ()
- */
- public double[] getVectorPart() {
- return new double[] {x, y, z};
- }
- /**
- * Multiplies the instance by a scalar.
- *
- * @param alpha Scalar factor.
- * @return a scaled quaternion.
- */
- public Quaternion multiply(final double alpha) {
- return of(alpha * w,
- alpha * x,
- alpha * y,
- alpha * z);
- }
- /**
- * Divides the instance by a scalar.
- *
- * @param alpha Scalar factor.
- * @return a scaled quaternion.
- */
- public Quaternion divide(final double alpha) {
- return of(w / alpha,
- x / alpha,
- y / alpha,
- z / alpha);
- }
- /**
- * Parses a string that would be produced by {@link #toString()}
- * and instantiates the corresponding object.
- *
- * @param s String representation.
- * @return an instance.
- * @throws NumberFormatException if the string does not conform
- * to the specification.
- */
- public static Quaternion parse(String s) {
- final int startBracket = s.indexOf(FORMAT_START);
- if (startBracket != 0) {
- throw new QuaternionParsingException("Expected start string: " + FORMAT_START);
- }
- final int len = s.length();
- final int endBracket = s.indexOf(FORMAT_END);
- if (endBracket != len - 1) {
- throw new QuaternionParsingException("Expected end string: " + FORMAT_END);
- }
- final String[] elements = s.substring(1, s.length() - 1).split(FORMAT_SEP);
- if (elements.length != NUMBER_OF_PARTS) {
- throw new QuaternionParsingException("Incorrect number of parts: Expected 4 but was " +
- elements.length +
- " (separator is '" + FORMAT_SEP + "')");
- }
- final double a;
- try {
- a = Double.parseDouble(elements[0]);
- } catch (NumberFormatException ex) {
- throw new QuaternionParsingException("Could not parse scalar part" + elements[0], ex);
- }
- final double b;
- try {
- b = Double.parseDouble(elements[1]);
- } catch (NumberFormatException ex) {
- throw new QuaternionParsingException("Could not parse i part" + elements[1], ex);
- }
- final double c;
- try {
- c = Double.parseDouble(elements[2]);
- } catch (NumberFormatException ex) {
- throw new QuaternionParsingException("Could not parse j part" + elements[2], ex);
- }
- final double d;
- try {
- d = Double.parseDouble(elements[3]);
- } catch (NumberFormatException ex) {
- throw new QuaternionParsingException("Could not parse k part" + elements[3], ex);
- }
- return of(a, b, c, d);
- }
- /**
- * {@inheritDoc}
- */
- @Override
- public String toString() {
- final StringBuilder s = new StringBuilder();
- s.append(FORMAT_START)
- .append(w).append(FORMAT_SEP)
- .append(x).append(FORMAT_SEP)
- .append(y).append(FORMAT_SEP)
- .append(z)
- .append(FORMAT_END);
- return s.toString();
- }
- /** See {@link #parse(String)}. */
- private static class QuaternionParsingException extends NumberFormatException {
- /** Serializable version identifier. */
- private static final long serialVersionUID = 20181128L;
- /**
- * @param msg Error message.
- */
- QuaternionParsingException(String msg) {
- super(msg);
- }
- /**
- * @param msg Error message.
- * @param cause Cause of the exception.
- */
- QuaternionParsingException(String msg, Throwable cause) {
- super(msg);
- initCause(cause);
- }
- }
- }