001/* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017package org.apache.commons.rng.sampling.distribution; 018 019import org.apache.commons.rng.UniformRandomProvider; 020 021/** 022 * <a href="https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform"> 023 * Box-Muller algorithm</a> for sampling from Gaussian distribution with 024 * mean 0 and standard deviation 1. 025 * 026 * <p>Sampling uses:</p> 027 * 028 * <ul> 029 * <li>{@link UniformRandomProvider#nextDouble()} 030 * <li>{@link UniformRandomProvider#nextLong()} 031 * </ul> 032 * 033 * @since 1.1 034 */ 035public class BoxMullerNormalizedGaussianSampler 036 implements NormalizedGaussianSampler, SharedStateContinuousSampler { 037 /** Next gaussian. */ 038 private double nextGaussian = Double.NaN; 039 /** Underlying source of randomness. */ 040 private final UniformRandomProvider rng; 041 042 /** 043 * Create an instance. 044 * 045 * @param rng Generator of uniformly distributed random numbers. 046 */ 047 public BoxMullerNormalizedGaussianSampler(UniformRandomProvider rng) { 048 this.rng = rng; 049 } 050 051 /** {@inheritDoc} */ 052 @Override 053 public double sample() { 054 final double random; 055 if (Double.isNaN(nextGaussian)) { 056 // Generate a pair of Gaussian numbers. 057 058 // Avoid zero for the uniform deviate y. 059 // The extreme tail of the sample is: 060 // y = 2^-53 061 // r = 8.57167 062 final double x = rng.nextDouble(); 063 final double y = InternalUtils.makeNonZeroDouble(rng.nextLong()); 064 final double alpha = 2 * Math.PI * x; 065 final double r = Math.sqrt(-2 * Math.log(y)); 066 067 // Return the first element of the generated pair. 068 random = r * Math.cos(alpha); 069 070 // Keep second element of the pair for next invocation. 071 nextGaussian = r * Math.sin(alpha); 072 } else { 073 // Use the second element of the pair (generated at the 074 // previous invocation). 075 random = nextGaussian; 076 077 // Both elements of the pair have been used. 078 nextGaussian = Double.NaN; 079 } 080 081 return random; 082 } 083 084 /** {@inheritDoc} */ 085 @Override 086 public String toString() { 087 return "Box-Muller normalized Gaussian deviate [" + rng.toString() + "]"; 088 } 089 090 /** 091 * {@inheritDoc} 092 * 093 * @since 1.3 094 */ 095 @Override 096 public SharedStateContinuousSampler withUniformRandomProvider(UniformRandomProvider rng) { 097 return new BoxMullerNormalizedGaussianSampler(rng); 098 } 099 100 /** 101 * Create a new normalised Gaussian sampler. 102 * 103 * @param <S> Sampler type. 104 * @param rng Generator of uniformly distributed random numbers. 105 * @return the sampler 106 * @since 1.3 107 */ 108 @SuppressWarnings("unchecked") 109 public static <S extends NormalizedGaussianSampler & SharedStateContinuousSampler> S 110 of(UniformRandomProvider rng) { 111 return (S) new BoxMullerNormalizedGaussianSampler(rng); 112 } 113}