001/* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017package org.apache.commons.rng.sampling.distribution; 018 019import org.apache.commons.rng.UniformRandomProvider; 020 021/** 022 * Sampler for the <a href="http://mathworld.wolfram.com/PoissonDistribution.html">Poisson distribution</a>. 023 * 024 * <ul> 025 * <li> 026 * For small means, a Poisson process is simulated using uniform deviates, as described in 027 * <blockquote> 028 * Knuth (1969). <i>Seminumerical Algorithms</i>. The Art of Computer Programming, 029 * Volume 2. Chapter 3.4.1.F.3 Important integer-valued distributions: The Poisson distribution. 030 * Addison Wesley. 031 * </blockquote> 032 * The Poisson process (and hence, the returned value) is bounded by {@code 1000 * mean}. 033 * </li> 034 * <li> 035 * For large means, we use the rejection algorithm described in 036 * <blockquote> 037 * Devroye, Luc. (1981). <i>The Computer Generation of Poisson Random Variables</i><br> 038 * <strong>Computing</strong> vol. 26 pp. 197-207. 039 * </blockquote> 040 * </li> 041 * </ul> 042 * 043 * <p>Sampling uses:</p> 044 * 045 * <ul> 046 * <li>{@link UniformRandomProvider#nextDouble()} 047 * <li>{@link UniformRandomProvider#nextLong()} (large means only) 048 * </ul> 049 * 050 * @since 1.0 051 */ 052public class PoissonSampler 053 extends SamplerBase 054 implements SharedStateDiscreteSampler { 055 056 /** 057 * Value for switching sampling algorithm. 058 * 059 * <p>Package scope for the {@link PoissonSamplerCache}. 060 */ 061 static final double PIVOT = 40; 062 /** The internal Poisson sampler. */ 063 private final SharedStateDiscreteSampler poissonSamplerDelegate; 064 065 /** 066 * This instance delegates sampling. Use the factory method 067 * {@link #of(UniformRandomProvider, double)} to create an optimal sampler. 068 * 069 * @param rng Generator of uniformly distributed random numbers. 070 * @param mean Mean. 071 * @throws IllegalArgumentException if {@code mean <= 0} or {@code mean > 0.5 *} 072 * {@link Integer#MAX_VALUE}. 073 */ 074 public PoissonSampler(UniformRandomProvider rng, 075 double mean) { 076 // Delegate all work to specialised samplers. 077 this(of(rng, mean)); 078 } 079 080 /** 081 * @param delegate Poisson sampler. 082 */ 083 private PoissonSampler(SharedStateDiscreteSampler delegate) { 084 super(null); 085 poissonSamplerDelegate = delegate; 086 } 087 088 /** {@inheritDoc} */ 089 @Override 090 public int sample() { 091 return poissonSamplerDelegate.sample(); 092 } 093 094 /** {@inheritDoc} */ 095 @Override 096 public String toString() { 097 return poissonSamplerDelegate.toString(); 098 } 099 100 /** 101 * {@inheritDoc} 102 * 103 * @since 1.3 104 */ 105 @Override 106 public SharedStateDiscreteSampler withUniformRandomProvider(UniformRandomProvider rng) { 107 // Direct return of the optimised sampler 108 return poissonSamplerDelegate.withUniformRandomProvider(rng); 109 } 110 111 /** 112 * Creates a new Poisson distribution sampler. 113 * 114 * @param rng Generator of uniformly distributed random numbers. 115 * @param mean Mean. 116 * @return the sampler 117 * @throws IllegalArgumentException if {@code mean <= 0} or {@code mean > 0.5 *} 118 * {@link Integer#MAX_VALUE}. 119 * @since 1.3 120 */ 121 public static SharedStateDiscreteSampler of(UniformRandomProvider rng, 122 double mean) { 123 // Each sampler should check the input arguments. 124 return mean < PIVOT ? 125 SmallMeanPoissonSampler.of(rng, mean) : 126 LargeMeanPoissonSampler.of(rng, mean); 127 } 128}