AhrensDieterExponentialSampler.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.rng.sampling.distribution;
- import org.apache.commons.rng.UniformRandomProvider;
- /**
- * Sampling from an <a href="http://mathworld.wolfram.com/ExponentialDistribution.html">exponential distribution</a>.
- *
- * <p>Sampling uses:</p>
- *
- * <ul>
- * <li>{@link UniformRandomProvider#nextLong()}
- * <li>{@link UniformRandomProvider#nextDouble()}
- * </ul>
- *
- * @since 1.0
- */
- public class AhrensDieterExponentialSampler
- extends SamplerBase
- implements SharedStateContinuousSampler {
- /**
- * Table containing the constants
- * \( q_i = sum_{j=1}^i (\ln 2)^j / j! = \ln 2 + (\ln 2)^2 / 2 + ... + (\ln 2)^i / i! \)
- * until the largest representable fraction below 1 is exceeded.
- *
- * Note that
- * \( 1 = 2 - 1 = \exp(\ln 2) - 1 = sum_{n=1}^\infinity (\ln 2)^n / n! \)
- * thus \( q_i \rightarrow 1 as i \rightarrow +\infinity \),
- * so the higher \( i \), the closer we get to 1 (the series is not alternating).
- *
- * By trying, n = 16 in Java is enough to reach 1.
- */
- private static final double[] EXPONENTIAL_SA_QI = new double[16];
- /** The mean of this distribution. */
- private final double mean;
- /** Underlying source of randomness. */
- private final UniformRandomProvider rng;
- //
- // Initialize tables.
- //
- static {
- //
- // Filling EXPONENTIAL_SA_QI table.
- // Note that we don't want qi = 0 in the table.
- //
- final double ln2 = Math.log(2);
- double qi = 0;
- // Start with 0!
- // This will not overflow a long as the length < 21
- long factorial = 1;
- for (int i = 0; i < EXPONENTIAL_SA_QI.length; i++) {
- factorial *= i + 1;
- qi += Math.pow(ln2, i + 1.0) / factorial;
- EXPONENTIAL_SA_QI[i] = qi;
- }
- }
- /**
- * Create an instance.
- *
- * @param rng Generator of uniformly distributed random numbers.
- * @param mean Mean of this distribution.
- * @throws IllegalArgumentException if {@code mean <= 0}
- */
- public AhrensDieterExponentialSampler(UniformRandomProvider rng,
- double mean) {
- // Validation before java.lang.Object constructor exits prevents partially initialized object
- this(InternalUtils.requireStrictlyPositive(mean, "mean"), rng);
- }
- /**
- * @param mean Mean.
- * @param rng Generator of uniformly distributed random numbers.
- */
- private AhrensDieterExponentialSampler(double mean,
- UniformRandomProvider rng) {
- super(null);
- this.rng = rng;
- this.mean = mean;
- }
- /** {@inheritDoc} */
- @Override
- public double sample() {
- // Step 1:
- double a = 0;
- // Avoid u=0 which creates an infinite loop
- double u = InternalUtils.makeNonZeroDouble(rng.nextLong());
- // Step 2 and 3:
- while (u < 0.5) {
- a += EXPONENTIAL_SA_QI[0];
- u *= 2;
- }
- // Step 4 (now u >= 0.5):
- u += u - 1;
- // Step 5:
- if (u <= EXPONENTIAL_SA_QI[0]) {
- return mean * (a + u);
- }
- // Step 6:
- int i = 0; // Should be 1, be we iterate before it in while using 0.
- double u2 = rng.nextDouble();
- double umin = u2;
- // Step 7 and 8:
- do {
- ++i;
- u2 = rng.nextDouble();
- if (u2 < umin) {
- umin = u2;
- }
- // Step 8:
- } while (u > EXPONENTIAL_SA_QI[i]); // Ensured to exit since EXPONENTIAL_SA_QI[MAX] = 1.
- return mean * (a + umin * EXPONENTIAL_SA_QI[0]);
- }
- /** {@inheritDoc} */
- @Override
- public String toString() {
- return "Ahrens-Dieter Exponential deviate [" + rng.toString() + "]";
- }
- /**
- * {@inheritDoc}
- *
- * @since 1.3
- */
- @Override
- public SharedStateContinuousSampler withUniformRandomProvider(UniformRandomProvider rng) {
- // Use private constructor without validation
- return new AhrensDieterExponentialSampler(mean, rng);
- }
- /**
- * Create a new exponential distribution sampler.
- *
- * @param rng Generator of uniformly distributed random numbers.
- * @param mean Mean of the distribution.
- * @return the sampler
- * @throws IllegalArgumentException if {@code mean <= 0}
- * @since 1.3
- */
- public static SharedStateContinuousSampler of(UniformRandomProvider rng,
- double mean) {
- return new AhrensDieterExponentialSampler(rng, mean);
- }
- }