InternalGamma.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.rng.sampling.distribution;
- /**
- * <h3>
- * Adapted and stripped down copy of class
- * {@code "org.apache.commons.math4.special.Gamma"}.
- * </h3>
- *
- * <p>
- * This is a utility class that provides computation methods related to the
- * Γ (Gamma) family of functions.
- * </p>
- */
- final class InternalGamma { // Class is package-private on purpose; do not make it public.
- /**
- * Constant \( g = \frac{607}{128} \) in the Lanczos approximation.
- */
- public static final double LANCZOS_G = 607.0 / 128.0;
- /** Lanczos coefficients. */
- private static final double[] LANCZOS_COEFFICIENTS = {
- 0.99999999999999709182,
- 57.156235665862923517,
- -59.597960355475491248,
- 14.136097974741747174,
- -0.49191381609762019978,
- .33994649984811888699e-4,
- .46523628927048575665e-4,
- -.98374475304879564677e-4,
- .15808870322491248884e-3,
- -.21026444172410488319e-3,
- .21743961811521264320e-3,
- -.16431810653676389022e-3,
- .84418223983852743293e-4,
- -.26190838401581408670e-4,
- .36899182659531622704e-5,
- };
- /** Avoid repeated computation of log(2*PI) / 2 in logGamma. */
- private static final double HALF_LOG_2_PI = 0.91893853320467274178032973640562;
- /**
- * Class contains only static methods.
- */
- private InternalGamma() {}
- /**
- * Computes the function \( \ln \Gamma(x) \) for \( x \gt 0 \).
- *
- * <p>
- * For \( x \leq 8 \), the implementation is based on the double precision
- * implementation in the <em>NSWC Library of Mathematics Subroutines</em>,
- * {@code DGAMLN}. For \( x \geq 8 \), the implementation is based on
- * </p>
- *
- * <ul>
- * <li><a href="http://mathworld.wolfram.com/GammaFunction.html">Gamma
- * Function</a>, equation (28).</li>
- * <li><a href="http://mathworld.wolfram.com/LanczosApproximation.html">
- * Lanczos Approximation</a>, equations (1) through (5).</li>
- * <li><a href="http://my.fit.edu/~gabdo/gamma.txt">Paul Godfrey, A note on
- * the computation of the convergent Lanczos complex Gamma
- * approximation</a></li>
- * </ul>
- *
- * @param x Argument.
- * @return \( \ln \Gamma(x) \), or {@code NaN} if {@code x <= 0}.
- */
- public static double logGamma(double x) {
- // Stripped-down version of the same method defined in "Commons Math":
- // Unused "if" branches (for when x < 8) have been removed here since
- // this method is only used (by class "InternalUtils") in order to
- // compute log(n!) for x > 20.
- final double sum = lanczos(x);
- final double tmp = x + LANCZOS_G + 0.5;
- return (x + 0.5) * Math.log(tmp) - tmp + HALF_LOG_2_PI + Math.log(sum / x);
- }
- /**
- * Computes the Lanczos approximation used to compute the gamma function.
- *
- * <p>
- * The Lanczos approximation is related to the Gamma function by the
- * following equation
- * \[
- * \Gamma(x) = \sqrt{2\pi} \, \frac{(g + x + \frac{1}{2})^{x + \frac{1}{2}} \, e^{-(g + x + \frac{1}{2})} \, \mathrm{lanczos}(x)}
- * {x}
- * \]
- * where \(g\) is the Lanczos constant.
- * </p>
- *
- * @param x Argument.
- * @return The Lanczos approximation.
- *
- * @see <a href="http://mathworld.wolfram.com/LanczosApproximation.html">Lanczos Approximation</a>
- * equations (1) through (5), and Paul Godfrey's
- * <a href="http://my.fit.edu/~gabdo/gamma.txt">Note on the computation
- * of the convergent Lanczos complex Gamma approximation</a>
- */
- private static double lanczos(final double x) {
- double sum = 0.0;
- for (int i = LANCZOS_COEFFICIENTS.length - 1; i > 0; --i) {
- sum += LANCZOS_COEFFICIENTS[i] / (x + i);
- }
- return sum + LANCZOS_COEFFICIENTS[0];
- }
- }