KempSmallMeanPoissonSampler.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.rng.sampling.distribution;
- import org.apache.commons.rng.UniformRandomProvider;
- /**
- * Sampler for the <a href="http://mathworld.wolfram.com/PoissonDistribution.html">Poisson
- * distribution</a>.
- *
- * <ul>
- * <li>
- * Kemp, A, W, (1981) Efficient Generation of Logarithmically Distributed
- * Pseudo-Random Variables. Journal of the Royal Statistical Society. Vol. 30, No. 3, pp.
- * 249-253.
- * </li>
- * </ul>
- *
- * <p>This sampler is suitable for {@code mean < 40}. For large means,
- * {@link LargeMeanPoissonSampler} should be used instead.</p>
- *
- * <p>Note: The algorithm uses a recurrence relation to compute the Poisson probability
- * and a rolling summation for the cumulative probability. When the mean is large the
- * initial probability (Math.exp(-mean)) is zero and an exception is raised by the
- * constructor.</p>
- *
- * <p>Sampling uses 1 call to {@link UniformRandomProvider#nextDouble()}. This method provides
- * an alternative to the {@link SmallMeanPoissonSampler} for slow generators of {@code double}.</p>
- *
- * @see <a href="https://www.jstor.org/stable/2346348">Kemp, A.W. (1981) JRSS Vol. 30, pp.
- * 249-253</a>
- * @since 1.3
- */
- public final class KempSmallMeanPoissonSampler
- implements SharedStateDiscreteSampler {
- /** Underlying source of randomness. */
- private final UniformRandomProvider rng;
- /**
- * Pre-compute {@code Math.exp(-mean)}.
- * Note: This is the probability of the Poisson sample {@code p(x=0)}.
- */
- private final double p0;
- /**
- * The mean of the Poisson sample.
- */
- private final double mean;
- /**
- * @param rng Generator of uniformly distributed random numbers.
- * @param p0 Probability of the Poisson sample {@code p(x=0)}.
- * @param mean Mean.
- */
- private KempSmallMeanPoissonSampler(UniformRandomProvider rng,
- double p0,
- double mean) {
- this.rng = rng;
- this.p0 = p0;
- this.mean = mean;
- }
- /** {@inheritDoc} */
- @Override
- public int sample() {
- // Note on the algorithm:
- // - X is the unknown sample deviate (the output of the algorithm)
- // - x is the current value from the distribution
- // - p is the probability of the current value x, p(X=x)
- // - u is effectively the cumulative probability that the sample X
- // is equal or above the current value x, p(X>=x)
- // So if p(X>=x) > p(X=x) the sample must be above x, otherwise it is x
- double u = rng.nextDouble();
- int x = 0;
- double p = p0;
- while (u > p) {
- u -= p;
- // Compute the next probability using a recurrence relation.
- // p(x+1) = p(x) * mean / (x+1)
- p *= mean / ++x;
- // The algorithm listed in Kemp (1981) does not check that the rolling probability
- // is positive. This check is added to ensure no errors when the limit of the summation
- // 1 - sum(p(x)) is above 0 due to cumulative error in floating point arithmetic.
- if (p == 0) {
- return x;
- }
- }
- return x;
- }
- /** {@inheritDoc} */
- @Override
- public String toString() {
- return "Kemp Small Mean Poisson deviate [" + rng.toString() + "]";
- }
- /** {@inheritDoc} */
- @Override
- public SharedStateDiscreteSampler withUniformRandomProvider(UniformRandomProvider rng) {
- return new KempSmallMeanPoissonSampler(rng, p0, mean);
- }
- /**
- * Creates a new sampler for the Poisson distribution.
- *
- * @param rng Generator of uniformly distributed random numbers.
- * @param mean Mean of the distribution.
- * @return the sampler
- * @throws IllegalArgumentException if {@code mean <= 0} or
- * {@code Math.exp(-mean) == 0}.
- */
- public static SharedStateDiscreteSampler of(UniformRandomProvider rng,
- double mean) {
- InternalUtils.requireStrictlyPositive(mean, "mean");
- final double p0 = Math.exp(-mean);
- // Probability must be positive. As mean increases then p(0) decreases.
- if (p0 > 0) {
- return new KempSmallMeanPoissonSampler(rng, p0, mean);
- }
- // This catches the edge case of a NaN mean
- throw new IllegalArgumentException("No probability for mean: " + mean);
- }
- }