PoissonSampler.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.rng.sampling.distribution;
- import org.apache.commons.rng.UniformRandomProvider;
- /**
- * Sampler for the <a href="http://mathworld.wolfram.com/PoissonDistribution.html">Poisson distribution</a>.
- *
- * <ul>
- * <li>
- * For small means, a Poisson process is simulated using uniform deviates, as described in
- * <blockquote>
- * Knuth (1969). <i>Seminumerical Algorithms</i>. The Art of Computer Programming,
- * Volume 2. Chapter 3.4.1.F.3 Important integer-valued distributions: The Poisson distribution.
- * Addison Wesley.
- * </blockquote>
- * The Poisson process (and hence, the returned value) is bounded by {@code 1000 * mean}.
- * </li>
- * <li>
- * For large means, we use the rejection algorithm described in
- * <blockquote>
- * Devroye, Luc. (1981). <i>The Computer Generation of Poisson Random Variables</i><br>
- * <strong>Computing</strong> vol. 26 pp. 197-207.
- * </blockquote>
- * </li>
- * </ul>
- *
- * <p>Sampling uses:</p>
- *
- * <ul>
- * <li>{@link UniformRandomProvider#nextDouble()}
- * <li>{@link UniformRandomProvider#nextLong()} (large means only)
- * </ul>
- *
- * @since 1.0
- */
- public class PoissonSampler
- extends SamplerBase
- implements SharedStateDiscreteSampler {
- /**
- * Value for switching sampling algorithm.
- *
- * <p>Package scope for the {@link PoissonSamplerCache}.
- */
- static final double PIVOT = 40;
- /** The internal Poisson sampler. */
- private final SharedStateDiscreteSampler poissonSamplerDelegate;
- /**
- * This instance delegates sampling. Use the factory method
- * {@link #of(UniformRandomProvider, double)} to create an optimal sampler.
- *
- * @param rng Generator of uniformly distributed random numbers.
- * @param mean Mean.
- * @throws IllegalArgumentException if {@code mean <= 0} or {@code mean > 0.5 *}
- * {@link Integer#MAX_VALUE}.
- */
- public PoissonSampler(UniformRandomProvider rng,
- double mean) {
- // Delegate all work to specialised samplers.
- this(of(rng, mean));
- }
- /**
- * @param delegate Poisson sampler.
- */
- private PoissonSampler(SharedStateDiscreteSampler delegate) {
- super(null);
- poissonSamplerDelegate = delegate;
- }
- /** {@inheritDoc} */
- @Override
- public int sample() {
- return poissonSamplerDelegate.sample();
- }
- /** {@inheritDoc} */
- @Override
- public String toString() {
- return poissonSamplerDelegate.toString();
- }
- /**
- * {@inheritDoc}
- *
- * @since 1.3
- */
- @Override
- public SharedStateDiscreteSampler withUniformRandomProvider(UniformRandomProvider rng) {
- // Direct return of the optimised sampler
- return poissonSamplerDelegate.withUniformRandomProvider(rng);
- }
- /**
- * Creates a new Poisson distribution sampler.
- *
- * @param rng Generator of uniformly distributed random numbers.
- * @param mean Mean.
- * @return the sampler
- * @throws IllegalArgumentException if {@code mean <= 0} or {@code mean > 0.5 *}
- * {@link Integer#MAX_VALUE}.
- * @since 1.3
- */
- public static SharedStateDiscreteSampler of(UniformRandomProvider rng,
- double mean) {
- // Each sampler should check the input arguments.
- return mean < PIVOT ?
- SmallMeanPoissonSampler.of(rng, mean) :
- LargeMeanPoissonSampler.of(rng, mean);
- }
- }