SmallMeanPoissonSampler.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.rng.sampling.distribution;
- import org.apache.commons.rng.UniformRandomProvider;
- /**
- * Sampler for the <a href="http://mathworld.wolfram.com/PoissonDistribution.html">Poisson distribution</a>.
- *
- * <ul>
- * <li>
- * For small means, a Poisson process is simulated using uniform deviates, as described in
- * <blockquote>
- * Knuth (1969). <i>Seminumerical Algorithms</i>. The Art of Computer Programming,
- * Volume 2. Chapter 3.4.1.F.3 Important integer-valued distributions: The Poisson distribution.
- * Addison Wesley.
- * </blockquote>
- * The Poisson process (and hence, the returned value) is bounded by {@code 1000 * mean}.
- * </li>
- * </ul>
- *
- * <p>This sampler is suitable for {@code mean < 40}.
- * For large means, {@link LargeMeanPoissonSampler} should be used instead.</p>
- *
- * <p>Sampling uses {@link UniformRandomProvider#nextDouble()} and requires on average
- * {@code mean + 1} deviates per sample.</p>
- *
- * @since 1.1
- */
- public class SmallMeanPoissonSampler
- implements SharedStateDiscreteSampler {
- /**
- * Pre-compute {@code Math.exp(-mean)}.
- * Note: This is the probability of the Poisson sample {@code P(n=0)}.
- */
- private final double p0;
- /** Pre-compute {@code 1000 * mean} as the upper limit of the sample. */
- private final int limit;
- /** Underlying source of randomness. */
- private final UniformRandomProvider rng;
- /**
- * Create an instance.
- *
- * @param rng Generator of uniformly distributed random numbers.
- * @param mean Mean.
- * @throws IllegalArgumentException if {@code mean <= 0} or {@code Math.exp(-mean) == 0}
- */
- public SmallMeanPoissonSampler(UniformRandomProvider rng,
- double mean) {
- this(rng, mean, computeP0(mean));
- }
- /**
- * Instantiates a new small mean poisson sampler.
- *
- * @param rng Generator of uniformly distributed random numbers.
- * @param mean Mean.
- * @param p0 {@code Math.exp(-mean)}.
- */
- private SmallMeanPoissonSampler(UniformRandomProvider rng,
- double mean,
- double p0) {
- this.rng = rng;
- this.p0 = p0;
- // The returned sample is bounded by 1000 * mean
- limit = (int) Math.ceil(1000 * mean);
- }
- /**
- * @param rng Generator of uniformly distributed random numbers.
- * @param source Source to copy.
- */
- private SmallMeanPoissonSampler(UniformRandomProvider rng,
- SmallMeanPoissonSampler source) {
- this.rng = rng;
- p0 = source.p0;
- limit = source.limit;
- }
- /** {@inheritDoc} */
- @Override
- public int sample() {
- int n = 0;
- double r = 1;
- while (n < limit) {
- r *= rng.nextDouble();
- if (r >= p0) {
- n++;
- } else {
- break;
- }
- }
- return n;
- }
- /** {@inheritDoc} */
- @Override
- public String toString() {
- return "Small Mean Poisson deviate [" + rng.toString() + "]";
- }
- /**
- * {@inheritDoc}
- *
- * @since 1.3
- */
- @Override
- public SharedStateDiscreteSampler withUniformRandomProvider(UniformRandomProvider rng) {
- return new SmallMeanPoissonSampler(rng, this);
- }
- /**
- * Creates a new sampler for the Poisson distribution.
- *
- * @param rng Generator of uniformly distributed random numbers.
- * @param mean Mean of the distribution.
- * @return the sampler
- * @throws IllegalArgumentException if {@code mean <= 0} or {@code Math.exp(-mean) == 0}.
- * @since 1.3
- */
- public static SharedStateDiscreteSampler of(UniformRandomProvider rng,
- double mean) {
- return new SmallMeanPoissonSampler(rng, mean);
- }
- /**
- * Compute {@code Math.exp(-mean)}.
- *
- * <p>This method exists to raise an exception before invocation of the
- * private constructor; this mitigates Finalizer attacks
- * (see SpotBugs CT_CONSTRUCTOR_THROW).
- *
- * @param mean Mean.
- * @return the mean
- * @throws IllegalArgumentException if {@code mean <= 0} or {@code Math.exp(-mean) == 0}
- */
- private static double computeP0(double mean) {
- InternalUtils.requireStrictlyPositive(mean, "mean");
- final double p0 = Math.exp(-mean);
- if (p0 > 0) {
- return p0;
- }
- // This excludes NaN values for the mean
- throw new IllegalArgumentException("No p(x=0) probability for mean: " + mean);
- }
- }