StableSampler.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.rng.sampling.distribution;
- import org.apache.commons.rng.UniformRandomProvider;
- /**
- * Samples from a stable distribution.
- *
- * <p>Several different parameterizations exist for the stable distribution.
- * This sampler uses the 0-parameterization distribution described in Nolan (2020) "Univariate Stable
- * Distributions: Models for Heavy Tailed Data". Springer Series in Operations Research and
- * Financial Engineering. Springer. Sections 1.7 and 3.3.3.
- *
- * <p>The random variable \( X \) has
- * the stable distribution \( S(\alpha, \beta, \gamma, \delta; 0) \) if its characteristic
- * function is given by:
- *
- * <p>\[ E(e^{iuX}) = \begin{cases} \exp \left (- \gamma^\alpha |u|^\alpha \left [1 - i \beta (\tan \frac{\pi \alpha}{2})(\text{sgn}(u)) \right ] + i \delta u \right ) & \alpha \neq 1 \\
- * \exp \left (- \gamma |u| \left [1 + i \beta \frac{2}{\pi} (\text{sgn}(u)) \log |u| \right ] + i \delta u \right ) & \alpha = 1 \end{cases} \]
- *
- * <p>The function is continuous with respect to all the parameters; the parameters \( \alpha \)
- * and \( \beta \) determine the shape and the parameters \( \gamma \) and \( \delta \) determine
- * the scale and location. The support of the distribution is:
- *
- * <p>\[ \text{support} f(x|\alpha,\beta,\gamma,\delta; 0) = \begin{cases} [\delta - \gamma \tan \frac{\pi \alpha}{2}, \infty) & \alpha \lt 1\ and\ \beta = 1 \\
- * (-\infty, \delta + \gamma \tan \frac{\pi \alpha}{2}] & \alpha \lt 1\ and\ \beta = -1 \\
- * (-\infty, \infty) & otherwise \end{cases} \]
- *
- * <p>The implementation uses the Chambers-Mallows-Stuck (CMS) method as described in:
- * <ul>
- * <li>Chambers, Mallows & Stuck (1976) "A Method for Simulating Stable Random Variables".
- * Journal of the American Statistical Association. 71 (354): 340–344.
- * <li>Weron (1996) "On the Chambers-Mallows-Stuck method for simulating skewed stable
- * random variables". Statistics & Probability Letters. 28 (2): 165–171.
- * </ul>
- *
- * @see <a href="https://en.wikipedia.org/wiki/Stable_distribution">Stable distribution (Wikipedia)</a>
- * @see <a href="https://link.springer.com/book/10.1007/978-3-030-52915-4">Nolan (2020) Univariate Stable Distributions</a>
- * @see <a href="https://doi.org/10.1080%2F01621459.1976.10480344">Chambers et al (1976) JOASA 71: 340-344</a>
- * @see <a href="https://doi.org/10.1016%2F0167-7152%2895%2900113-1">Weron (1996).
- * Statistics & Probability Letters. 28 (2): 165–171.</a>
- * @since 1.4
- */
- public abstract class StableSampler implements SharedStateContinuousSampler {
- /** pi / 2. */
- private static final double PI_2 = Math.PI / 2;
- /** The alpha value for the Gaussian case. */
- private static final double ALPHA_GAUSSIAN = 2;
- /** The alpha value for the Cauchy case. */
- private static final double ALPHA_CAUCHY = 1;
- /** The alpha value for the Levy case. */
- private static final double ALPHA_LEVY = 0.5;
- /** The alpha value for the {@code alpha -> 0} to switch to using the Weron formula.
- * Note that small alpha requires robust correction of infinite samples. */
- private static final double ALPHA_SMALL = 0.02;
- /** The beta value for the Levy case. */
- private static final double BETA_LEVY = 1.0;
- /** The gamma value for the normalized case. */
- private static final double GAMMA_1 = 1.0;
- /** The delta value for the normalized case. */
- private static final double DELTA_0 = 0.0;
- /** The tau value for zero. When tau is zero, this is effectively {@code beta = 0}. */
- private static final double TAU_ZERO = 0.0;
- /**
- * The lower support for the distribution.
- * This is the lower bound of {@code (-inf, +inf)}
- * If the sample is not within this bound ({@code lower < x}) then it is either
- * infinite or NaN and the result should be checked.
- */
- private static final double LOWER = Double.NEGATIVE_INFINITY;
- /**
- * The upper support for the distribution.
- * This is the upper bound of {@code (-inf, +inf)}.
- * If the sample is not within this bound ({@code x < upper}) then it is either
- * infinite or NaN and the result should be checked.
- */
- private static final double UPPER = Double.POSITIVE_INFINITY;
- /** Underlying source of randomness. */
- private final UniformRandomProvider rng;
- // Implementation notes
- //
- // The Chambers-Mallows-Stuck (CMS) method uses a uniform deviate u in (0, 1) and an
- // exponential deviate w to compute a stable deviate. Chambers et al (1976) published
- // a formula for alpha = 1 and alpha != 1. The function is discontinuous at alpha = 1
- // and to address this a trigonmoic rearrangement was provided using half angles that
- // is continuous with respect to alpha. The original discontinuous formulas were proven
- // in Weron (1996). The CMS rearrangement creates a deviate in the 0-parameterization
- // defined by Nolan (2020); the original discontinuous functions create a deviate in the
- // 1-parameterization defined by Nolan. A shift can be used to convert one parameterisation
- // to the other. The shift is the magnitude of the zeta term from the 1-parameterisation.
- // The following table shows how the zeta term -> inf when alpha -> 1 for
- // different beta (hence the discontinuity in the function):
- //
- // Zeta
- // Beta
- // Alpha 1.0 0.5 0.25 0.1 0.0
- // 0.001 0.001571 0.0007854 0.0003927 0.0001571 0.0
- // 0.01 0.01571 0.007855 0.003927 0.001571 0.0
- // 0.05 0.07870 0.03935 0.01968 0.007870 0.0
- // 0.01 0.01571 0.007855 0.003927 0.001571 0.0
- // 0.1 0.1584 0.07919 0.03960 0.01584 0.0
- // 0.5 1.000 0.5000 0.2500 0.1000 0.0
- // 0.9 6.314 3.157 1.578 0.6314 0.0
- // 0.95 12.71 6.353 3.177 1.271 0.0
- // 0.99 63.66 31.83 15.91 6.366 0.0
- // 0.995 127.3 63.66 31.83 12.73 0.0
- // 0.999 636.6 318.3 159.2 63.66 0.0
- // 0.9995 1273 636.6 318.3 127.3 0.0
- // 0.9999 6366 3183 1592 636.6 0.0
- // 1.0 1.633E+16 8.166E+15 4.083E+15 1.633E+15 0.0
- //
- // For numerical simulation the 0-parameterization is favoured as it is continuous
- // with respect to all the parameters. When approaching alpha = 1 the large magnitude
- // of the zeta term used to shift the 1-parameterization results in cancellation and the
- // number of bits of the output sample is effected. This sampler uses the CMS method with
- // the continuous function as the base for the implementation. However it is not suitable
- // for all values of alpha and beta.
- //
- // The method computes a value log(z) with z in the interval (0, inf). When z is 0 or infinite
- // the computation can return invalid results. The open bound for the deviate u avoids
- // generating an extreme value that results in cancellation, z=0 and an invalid expression.
- // However due to floating point error this can occur
- // when u is close to 0 or 1, and beta is -1 or 1. Thus it is not enough to create
- // u by avoiding 0 or 1 and further checks are required.
- // The division by the deviate w also results in an invalid expression as the term z becomes
- // infinite as w -> 0. It should be noted that such events are extremely rare
- // (frequency in the 1 in 10^15), or will not occur at all depending on the parameters alpha
- // and beta.
- //
- // When alpha -> 0 then the distribution is extremely long tailed and the expression
- // using log(z) often computes infinity. Certain parameters can create NaN due to
- // 0 / 0, 0 * inf, or inf - inf. Thus the implementation must check the final result
- // and perform a correction if required, or generate another sample.
- // Correcting the original CMS formula has many edge cases depending on parameters. The
- // alternative formula provided by Weron is easier to correct when infinite values are
- // created. This correction is made easier by knowing that u is not 0 or 1 as certain
- // conditions on the intermediate terms can be eliminated. The implementation
- // thus generates u in the open interval (0,1) but leaves w unchecked and potentially 0.
- // The sample is generated and the result tested against the expected support. This detects
- // any NaN and infinite values. Incorrect samples due to the inability to compute log(z)
- // (extremely rare) and samples where alpha -> 0 has resulted in an infinite expression
- // for the value d are corrected using the Weron formula and returned within the support.
- //
- // The CMS algorithm is continuous for the parameters. However when alpha=1 or beta=0
- // many terms cancel and these cases are handled with specialised implementations.
- // The beta=0 case implements the same CMS algorithm with certain terms eliminated.
- // Correction uses the alternative Weron formula. When alpha=1 the CMS algorithm can
- // be corrected from infinite cases due to assumptions on the intermediate terms.
- //
- // The following table show the failure frequency (result not finite or, when beta=+/-1,
- // within the support) for the CMS algorithm computed using 2^30 random deviates.
- //
- // CMS failure rate
- // Beta
- // Alpha 1.0 0.5 0.25 0.1 0.0
- // 1.999 0.0 0.0 0.0 0.0 0.0
- // 1.99 0.0 0.0 0.0 0.0 0.0
- // 1.9 0.0 0.0 0.0 0.0 0.0
- // 1.5 0.0 0.0 0.0 0.0 0.0
- // 1.1 0.0 0.0 0.0 0.0 0.0
- // 1.0 0.0 0.0 0.0 0.0 0.0
- // 0.9 0.0 0.0 0.0 0.0 0.0
- // 0.5 0.0 0.0 0.0 0.0 0.0
- // 0.25 0.0 0.0 0.0 0.0 0.0
- // 0.1 0.0 0.0 0.0 0.0 0.0
- // 0.05 0.0003458 0.0 0.0 0.0 0.0
- // 0.02 0.009028 6.938E-7 7.180E-7 7.320E-7 6.873E-7
- // 0.01 0.004878 0.0008555 0.0008553 0.0008554 0.0008570
- // 0.005 0.1519 0.02896 0.02897 0.02897 0.02897
- // 0.001 0.6038 0.3903 0.3903 0.3903 0.3903
- //
- // The sampler switches to using the error checked Weron implementation when alpha < 0.02.
- // Unit tests demonstrate the two samplers (CMS or Weron) product the same result within
- // a tolerance. The switch point is based on a consistent failure rate above 1 in a million.
- // At this point zeta is small and cancellation leading to loss of bits in the sample is
- // minimal.
- //
- // In common use the sampler will not have a measurable failure rate. The output will
- // be continuous as alpha -> 1 and beta -> 0. The evaluated function produces symmetric
- // samples when u and beta are mirrored around 0.5 and 0 respectively. To achieve this
- // the computation of certain parameters has been changed from the original implementation
- // to avoid evaluating Math.tan outside the interval (-pi/2, pi/2).
- //
- // Note: Chambers et al (1976) use an approximation to tan(x) / x in the RSTAB routine.
- // A JMH performance test is available in the RNG examples module comparing Math.tan
- // with various approximations. The functions are faster than Math.tan(x) / x.
- // This implementation uses a higher accuracy approximation than the original RSTAB
- // implementation; it has a mean ULP difference to Math.tan of less than 1 and has
- // a noticeable performance gain.
- /**
- * Base class for implementations of a stable distribution that requires an exponential
- * random deviate.
- */
- private abstract static class BaseStableSampler extends StableSampler {
- /** pi/2 scaled by 2^-53. */
- private static final double PI_2_SCALED = 0x1.0p-54 * Math.PI;
- /** pi/4 scaled by 2^-53. */
- private static final double PI_4_SCALED = 0x1.0p-55 * Math.PI;
- /** -pi / 2. */
- private static final double NEG_PI_2 = -Math.PI / 2;
- /** -pi / 4. */
- private static final double NEG_PI_4 = -Math.PI / 4;
- /** The exponential sampler. */
- private final ContinuousSampler expSampler;
- /**
- * @param rng Underlying source of randomness
- */
- BaseStableSampler(UniformRandomProvider rng) {
- super(rng);
- expSampler = ZigguratSampler.Exponential.of(rng);
- }
- /**
- * Gets a random value for the omega parameter ({@code w}).
- * This is an exponential random variable with mean 1.
- *
- * <p>Warning: For simplicity this does not check the variate is not 0.
- * The calling CMS algorithm should detect and handle incorrect samples as a result
- * of this unlikely edge case.
- *
- * @return omega
- */
- double getOmega() {
- // Note: Ideally this should not have a value of 0 as the CMS algorithm divides
- // by w and it creates infinity. This can result in NaN output.
- // Under certain parameterizations non-zero small w also creates NaN output.
- // Thus output should be checked regardless.
- return expSampler.sample();
- }
- /**
- * Gets a random value for the phi parameter.
- * This is a uniform random variable in {@code (-pi/2, pi/2)}.
- *
- * @return phi
- */
- double getPhi() {
- // See getPhiBy2 for method details.
- final double x = (nextLong() >> 10) * PI_2_SCALED;
- // Deliberate floating-point equality check
- if (x == NEG_PI_2) {
- return getPhi();
- }
- return x;
- }
- /**
- * Gets a random value for the phi parameter divided by 2.
- * This is a uniform random variable in {@code (-pi/4, pi/4)}.
- *
- * <p>Note: Ideally this should not have a value of -pi/4 or pi/4 as the CMS algorithm
- * can generate infinite values when the phi/2 uniform deviate is +/-pi/4. This
- * can result in NaN output. Under certain parameterizations phi/2 close to the limits
- * also create NaN output. Thus output should be checked regardless. Avoiding
- * the extreme values simplifies the number of checks that are required.
- *
- * @return phi / 2
- */
- double getPhiBy2() {
- // As per o.a.c.rng.core.utils.NumberFactory.makeDouble(long) but using a
- // signed shift of 10 in place of an unsigned shift of 11. With a factor of 2^-53
- // this would produce a double in [-1, 1).
- // Here the multiplication factor incorporates pi/4 to avoid a separate
- // multiplication.
- final double x = (nextLong() >> 10) * PI_4_SCALED;
- // Deliberate floating-point equality check
- if (x == NEG_PI_4) {
- // Sample again using recursion.
- // A stack overflow due to a broken RNG will eventually occur
- // rather than the alternative which is an infinite loop
- // while x == -pi/4.
- return getPhiBy2();
- }
- return x;
- }
- }
- /**
- * Class for implementations of a stable distribution transformed by scale and location.
- */
- private static final class TransformedStableSampler extends StableSampler {
- /** Underlying normalized stable sampler. */
- private final StableSampler sampler;
- /** The scale parameter. */
- private final double gamma;
- /** The location parameter. */
- private final double delta;
- /**
- * @param sampler Normalized stable sampler.
- * @param gamma Scale parameter. Must be strictly positive.
- * @param delta Location parameter.
- */
- TransformedStableSampler(StableSampler sampler, double gamma, double delta) {
- // No RNG required
- super(null);
- this.sampler = sampler;
- this.gamma = gamma;
- this.delta = delta;
- }
- @Override
- public double sample() {
- return gamma * sampler.sample() + delta;
- }
- @Override
- public StableSampler withUniformRandomProvider(UniformRandomProvider rng) {
- return new TransformedStableSampler(sampler.withUniformRandomProvider(rng),
- gamma, delta);
- }
- @Override
- public String toString() {
- // Avoid a null pointer from the unset RNG instance in the parent class
- return sampler.toString();
- }
- }
- /**
- * Implement the {@code alpha = 2} stable distribution case (Gaussian distribution).
- */
- private static final class GaussianStableSampler extends StableSampler {
- /** sqrt(2). */
- private static final double ROOT_2 = Math.sqrt(2);
- /** Underlying normalized Gaussian sampler. */
- private final NormalizedGaussianSampler sampler;
- /** The standard deviation. */
- private final double stdDev;
- /** The mean. */
- private final double mean;
- /**
- * @param rng Underlying source of randomness
- * @param gamma Scale parameter. Must be strictly positive.
- * @param delta Location parameter.
- */
- GaussianStableSampler(UniformRandomProvider rng, double gamma, double delta) {
- super(rng);
- this.sampler = ZigguratSampler.NormalizedGaussian.of(rng);
- // A standardized stable sampler with alpha=2 has variance 2.
- // Set the standard deviation as sqrt(2) * scale.
- // Avoid this being infinity to avoid inf * 0 in the sample
- this.stdDev = Math.min(Double.MAX_VALUE, ROOT_2 * gamma);
- this.mean = delta;
- }
- /**
- * @param rng Underlying source of randomness
- * @param source Source to copy.
- */
- GaussianStableSampler(UniformRandomProvider rng, GaussianStableSampler source) {
- super(rng);
- this.sampler = ZigguratSampler.NormalizedGaussian.of(rng);
- this.stdDev = source.stdDev;
- this.mean = source.mean;
- }
- @Override
- public double sample() {
- return stdDev * sampler.sample() + mean;
- }
- @Override
- public GaussianStableSampler withUniformRandomProvider(UniformRandomProvider rng) {
- return new GaussianStableSampler(rng, this);
- }
- }
- /**
- * Implement the {@code alpha = 1} and {@code beta = 0} stable distribution case
- * (Cauchy distribution).
- */
- private static final class CauchyStableSampler extends BaseStableSampler {
- /** The scale parameter. */
- private final double gamma;
- /** The location parameter. */
- private final double delta;
- /**
- * @param rng Underlying source of randomness
- * @param gamma Scale parameter. Must be strictly positive.
- * @param delta Location parameter.
- */
- CauchyStableSampler(UniformRandomProvider rng, double gamma, double delta) {
- super(rng);
- this.gamma = gamma;
- this.delta = delta;
- }
- /**
- * @param rng Underlying source of randomness
- * @param source Source to copy.
- */
- CauchyStableSampler(UniformRandomProvider rng, CauchyStableSampler source) {
- super(rng);
- this.gamma = source.gamma;
- this.delta = source.delta;
- }
- @Override
- public double sample() {
- // Note:
- // The CMS beta=0 with alpha=1 sampler reduces to:
- // S = 2 * a / a2, with a = tan(x), a2 = 1 - a^2, x = phi/2
- // This is a double angle identity for tan:
- // 2 * tan(x) / (1 - tan^2(x)) = tan(2x)
- // Here we use the double angle identity for consistency with the other samplers.
- final double phiby2 = getPhiBy2();
- final double a = phiby2 * SpecialMath.tan2(phiby2);
- final double a2 = 1 - a * a;
- final double x = 2 * a / a2;
- return gamma * x + delta;
- }
- @Override
- public CauchyStableSampler withUniformRandomProvider(UniformRandomProvider rng) {
- return new CauchyStableSampler(rng, this);
- }
- }
- /**
- * Implement the {@code alpha = 0.5} and {@code beta = 1} stable distribution case
- * (Levy distribution).
- *
- * Note: This sampler can be used to output the symmetric case when
- * {@code beta = -1} by negating {@code gamma}.
- */
- private static final class LevyStableSampler extends StableSampler {
- /** Underlying normalized Gaussian sampler. */
- private final NormalizedGaussianSampler sampler;
- /** The scale parameter. */
- private final double gamma;
- /** The location parameter. */
- private final double delta;
- /**
- * @param rng Underlying source of randomness
- * @param gamma Scale parameter. Must be strictly positive.
- * @param delta Location parameter.
- */
- LevyStableSampler(UniformRandomProvider rng, double gamma, double delta) {
- super(rng);
- this.sampler = ZigguratSampler.NormalizedGaussian.of(rng);
- this.gamma = gamma;
- this.delta = delta;
- }
- /**
- * @param rng Underlying source of randomness
- * @param source Source to copy.
- */
- LevyStableSampler(UniformRandomProvider rng, LevyStableSampler source) {
- super(rng);
- this.sampler = ZigguratSampler.NormalizedGaussian.of(rng);
- this.gamma = source.gamma;
- this.delta = source.delta;
- }
- @Override
- public double sample() {
- // Levy(Z) = 1 / N(0,1)^2, where N(0,1) is a standard normalized variate
- final double norm = sampler.sample();
- // Here we must transform from the 1-parameterization to the 0-parameterization.
- // This is a shift of -beta * tan(pi * alpha / 2) = -1 when alpha=0.5, beta=1.
- final double z = (1.0 / (norm * norm)) - 1.0;
- // In the 0-parameterization the scale and location are a linear transform.
- return gamma * z + delta;
- }
- @Override
- public LevyStableSampler withUniformRandomProvider(UniformRandomProvider rng) {
- return new LevyStableSampler(rng, this);
- }
- }
- /**
- * Implement the generic stable distribution case: {@code alpha < 2} and
- * {@code beta != 0}. This routine assumes {@code alpha != 1}.
- *
- * <p>Implements the Chambers-Mallows-Stuck (CMS) method using the
- * formula provided in Weron (1996) "On the Chambers-Mallows-Stuck method for
- * simulating skewed stable random variables" Statistics & Probability
- * Letters. 28 (2): 165–171. This method is easier to correct from infinite and
- * NaN results by boxing intermediate infinite values.
- *
- * <p>The formula produces a stable deviate from the 1-parameterization that is
- * discontinuous at {@code alpha=1}. A shift is used to create the 0-parameterization.
- * This shift is very large as {@code alpha -> 1} and the output loses bits of precision
- * in the deviate due to cancellation. It is not recommended to use this sampler when
- * {@code alpha -> 1} except for edge case correction.
- *
- * <p>This produces non-NaN output for all parameters alpha, beta, u and w with
- * the correct orientation for extremes of the distribution support.
- * The formulas used are symmetric with regard to beta and u.
- *
- * @see <a href="https://doi.org/10.1016%2F0167-7152%2895%2900113-1">Weron, R
- * (1996). Statistics & Probability Letters. 28 (2): 165–171.</a>
- */
- static class WeronStableSampler extends BaseStableSampler {
- /** Epsilon (1 - alpha). */
- protected final double eps;
- /** Alpha (1 - eps). */
- protected final double meps1;
- /** Cache of expression value used in generation. */
- protected final double zeta;
- /** Cache of expression value used in generation. */
- protected final double atanZeta;
- /** Cache of expression value used in generation. */
- protected final double scale;
- /** 1 / alpha = 1 / (1 - eps). */
- protected final double inv1mEps;
- /** (1 / alpha) - 1 = eps / (1 - eps). */
- protected final double epsDiv1mEps;
- /** The inclusive lower support for the distribution. */
- protected final double lower;
- /** The inclusive upper support for the distribution. */
- protected final double upper;
- /**
- * @param rng Underlying source of randomness
- * @param alpha Stability parameter. Must be in the interval {@code (0, 2]}.
- * @param beta Skewness parameter. Must be in the interval {@code [-1, 1]}.
- */
- WeronStableSampler(UniformRandomProvider rng, double alpha, double beta) {
- super(rng);
- eps = 1 - alpha;
- // When alpha < 0.5, 1 - eps == alpha is not always true as the reverse is not exact.
- // Here we store 1 - eps in place of alpha. Thus eps + (1 - eps) = 1.
- meps1 = 1 - eps;
- // Compute pre-factors for the Weron formula used during error correction.
- if (meps1 > 1) {
- // Avoid calling tan outside the domain limit [-pi/2, pi/2].
- zeta = beta * Math.tan((2 - meps1) * PI_2);
- } else {
- zeta = -beta * Math.tan(meps1 * PI_2);
- }
- // Do not store xi = Math.atan(-zeta) / meps1 due to floating-point division errors.
- // Directly store Math.atan(-zeta).
- atanZeta = Math.atan(-zeta);
- scale = Math.pow(1 + zeta * zeta, 0.5 / meps1);
- // Note: These terms are used interchangeably in formulas
- // 1 1
- // ------- = -----
- // (1-eps) alpha
- inv1mEps = 1.0 / meps1;
- // 1 eps (1-alpha) 1
- // ------- - 1 = ------- = --------- = ----- - 1
- // (1-eps) (1-eps) alpha alpha
- epsDiv1mEps = inv1mEps - 1;
- // Compute the support. This applies when alpha < 1 and beta = +/-1
- if (alpha < 1 && Math.abs(beta) == 1) {
- if (beta == 1) {
- // alpha < 0, beta = 1
- lower = zeta;
- upper = UPPER;
- } else {
- // alpha < 0, beta = -1
- lower = LOWER;
- upper = zeta;
- }
- } else {
- lower = LOWER;
- upper = UPPER;
- }
- }
- /**
- * @param rng Underlying source of randomness
- * @param source Source to copy.
- */
- WeronStableSampler(UniformRandomProvider rng, WeronStableSampler source) {
- super(rng);
- this.eps = source.eps;
- this.meps1 = source.meps1;
- this.zeta = source.zeta;
- this.atanZeta = source.atanZeta;
- this.scale = source.scale;
- this.inv1mEps = source.inv1mEps;
- this.epsDiv1mEps = source.epsDiv1mEps;
- this.lower = source.lower;
- this.upper = source.upper;
- }
- @Override
- public double sample() {
- final double phi = getPhi();
- final double w = getOmega();
- return createSample(phi, w);
- }
- /**
- * Create the sample. This routine is robust to edge cases and returns a deviate
- * at the extremes of the support. It correctly handles {@code alpha -> 0} when
- * the sample is increasingly likely to be +/- infinity.
- *
- * @param phi Uniform deviate in {@code (-pi/2, pi/2)}
- * @param w Exponential deviate
- * @return x
- */
- protected double createSample(double phi, double w) {
- // Here we use the formula provided by Weron for the 1-parameterization.
- // Note: Adding back zeta creates the 0-parameterization defined in Nolan (1998):
- // X ~ S0_alpha(s,beta,u0) with s=1, u0=0 for a standard random variable.
- // As alpha -> 1 the translation zeta to create the stable deviate
- // in the 0-parameterization is increasingly large as tan(pi/2) -> infinity.
- // The max translation is approximately 1e16.
- // Without this translation the stable deviate is in the 1-parameterization
- // and the function is not continuous with respect to alpha.
- // Due to the large zeta when alpha -> 1 the number of bits of the output variable
- // are very low due to cancellation.
- // As alpha -> 0 or 2 then zeta -> 0 and cancellation is not relevant.
- // The formula can be modified for infinite terms to compute a result for extreme
- // deviates u and w when the CMS formula fails.
- // Note the following term is subject to floating point error:
- // xi = atan(-zeta) / alpha
- // alphaPhiXi = alpha * (phi + xi)
- // This is required: cos(phi - alphaPhiXi) > 0 => phi - alphaPhiXi in (-pi/2, pi/2).
- // Thus we compute atan(-zeta) and use it to compute two terms:
- // [1] alpha * (phi + xi) = alpha * (phi + atan(-zeta) / alpha) = alpha * phi + atan(-zeta)
- // [2] phi - alpha * (phi + xi) = phi - alpha * phi - atan(-zeta) = (1-alpha) * phi - atan(-zeta)
- // Compute terms
- // Either term can be infinite or 0. Certain parameters compute 0 * inf.
- // t1=inf occurs alpha -> 0.
- // t1=0 occurs when beta = tan(-alpha * phi) / tan(alpha * pi / 2).
- // t2=inf occurs when w -> 0 and alpha -> 0.
- // t2=0 occurs when alpha -> 0 and phi -> pi/2.
- // Detect zeros and return as zeta.
- // Note sin(alpha * phi + atanZeta) is zero when:
- // alpha * phi = -atan(-zeta)
- // tan(-alpha * phi) = -zeta
- // = beta * tan(alpha * pi / 2)
- // Since |phi| < pi/2 this requires beta to have an opposite sign to phi
- // and a magnitude < 1. This is possible and in this case avoid a possible
- // 0 / 0 by setting the result as if term t1=0 and the result is zeta.
- double t1 = Math.sin(meps1 * phi + atanZeta);
- if (t1 == 0) {
- return zeta;
- }
- // Since cos(phi) is in (0, 1] this term will not create a
- // large magnitude to create t1 = 0.
- t1 /= Math.pow(Math.cos(phi), inv1mEps);
- // Iff Math.cos(eps * phi - atanZeta) is zero then 0 / 0 can occur if w=0.
- // Iff Math.cos(eps * phi - atanZeta) is below zero then NaN will occur
- // in the power function. These cases are avoided by phi=(-pi/2, pi/2) and direct
- // use of arctan(-zeta).
- final double t2 = Math.pow(Math.cos(eps * phi - atanZeta) / w, epsDiv1mEps);
- if (t2 == 0) {
- return zeta;
- }
- final double x = t1 * t2 * scale + zeta;
- // Check the bounds. Applies when alpha < 1 and beta = +/-1.
- if (x <= lower) {
- return lower;
- }
- return x < upper ? x : upper;
- }
- @Override
- public WeronStableSampler withUniformRandomProvider(UniformRandomProvider rng) {
- return new WeronStableSampler(rng, this);
- }
- }
- /**
- * Implement the generic stable distribution case: {@code alpha < 2} and
- * {@code beta != 0}. This routine assumes {@code alpha != 1}.
- *
- * <p>Implements the Chambers-Mallows-Stuck (CMS) method from Chambers, et al
- * (1976) A Method for Simulating Stable Random Variables. Journal of the
- * American Statistical Association Vol. 71, No. 354, pp. 340-344.
- *
- * <p>The formula produces a stable deviate from the 0-parameterization that is
- * continuous at {@code alpha=1}.
- *
- * <p>This is an implementation of the Fortran routine RSTAB. In the event the
- * computation fails then an alternative computation is performed using the
- * formula provided in Weron (1996) "On the Chambers-Mallows-Stuck method for
- * simulating skewed stable random variables" Statistics & Probability
- * Letters. 28 (2): 165–171. This method is easier to correct from infinite and
- * NaN results. The error correction path is extremely unlikely to occur during
- * use unless {@code alpha -> 0}. In general use it requires the random deviates
- * w or u are extreme. See the unit tests for conditions that create them.
- *
- * <p>This produces non-NaN output for all parameters alpha, beta, u and w with
- * the correct orientation for extremes of the distribution support.
- * The formulas used are symmetric with regard to beta and u.
- */
- static class CMSStableSampler extends WeronStableSampler {
- /** 1/2. */
- private static final double HALF = 0.5;
- /** Cache of expression value used in generation. */
- private final double tau;
- /**
- * @param rng Underlying source of randomness
- * @param alpha Stability parameter. Must be in the interval {@code (0, 2]}.
- * @param beta Skewness parameter. Must be in the interval {@code [-1, 1]}.
- */
- CMSStableSampler(UniformRandomProvider rng, double alpha, double beta) {
- super(rng, alpha, beta);
- // Compute the RSTAB pre-factor.
- tau = getTau(alpha, beta);
- }
- /**
- * @param rng Underlying source of randomness
- * @param source Source to copy.
- */
- CMSStableSampler(UniformRandomProvider rng, CMSStableSampler source) {
- super(rng, source);
- this.tau = source.tau;
- }
- /**
- * Gets tau. This is a factor used in the CMS algorithm. If this is zero then
- * a special case of {@code beta -> 0} has occurred.
- *
- * @param alpha Stability parameter. Must be in the interval {@code (0, 2]}.
- * @param beta Skewness parameter. Must be in the interval {@code [-1, 1]}.
- * @return tau
- */
- static double getTau(double alpha, double beta) {
- final double eps = 1 - alpha;
- final double meps1 = 1 - eps;
- // Compute RSTAB prefactor
- final double tau;
- // tau is symmetric around alpha=1
- // tau -> beta / pi/2 as alpha -> 1
- // tau -> 0 as alpha -> 2 or 0
- // Avoid calling tan as the value approaches the domain limit [-pi/2, pi/2].
- if (Math.abs(eps) < HALF) {
- // 0.5 < alpha < 1.5. Note: This works when eps=0 as tan(0) / 0 == 1.
- tau = beta / (SpecialMath.tan2(eps * PI_2) * PI_2);
- } else {
- // alpha >= 1.5 or alpha <= 0.5.
- // Do not call tan with alpha > 1 as it wraps in the domain [-pi/2, pi/2].
- // Since pi is approximate the symmetry is lost by wrapping.
- // Keep within the domain using (2-alpha).
- if (meps1 > 1) {
- tau = beta * PI_2 * eps * (2 - meps1) * -SpecialMath.tan2((2 - meps1) * PI_2);
- } else {
- tau = beta * PI_2 * eps * meps1 * SpecialMath.tan2(meps1 * PI_2);
- }
- }
- return tau;
- }
- @Override
- public double sample() {
- final double phiby2 = getPhiBy2();
- final double w = getOmega();
- // Compute as per the RSTAB routine.
- // Generic stable distribution that is continuous as alpha -> 1.
- // This is a trigonomic rearrangement of equation 4.1 from Chambers et al (1976)
- // as implemented in the Fortran program RSTAB.
- // Uses the special functions:
- // tan2 = tan(x) / x
- // d2 = (exp(x) - 1) / x
- // The method is implemented as per the RSTAB routine with the exceptions:
- // 1. The function tan2(x) is implemented with a higher precision approximation.
- // 2. The sample is tested against the expected distribution support.
- // Infinite intermediate terms that create infinite or NaN are corrected by
- // switching the formula and handling infinite terms.
- // Compute some tangents
- // a in (-1, 1)
- // bb in [1, 4/pi)
- // b in (-1, 1)
- final double a = phiby2 * SpecialMath.tan2(phiby2);
- final double bb = SpecialMath.tan2(eps * phiby2);
- final double b = eps * phiby2 * bb;
- // Compute some necessary subexpressions
- final double da = a * a;
- final double db = b * b;
- // a2 in (0, 1]
- final double a2 = 1 - da;
- // a2p in [1, 2)
- final double a2p = 1 + da;
- // b2 in (0, 1]
- final double b2 = 1 - db;
- // b2p in [1, 2)
- final double b2p = 1 + db;
- // Compute coefficient.
- // numerator=0 is not possible *in theory* when the uniform deviate generating phi
- // is in the open interval (0, 1). In practice it is possible to obtain <=0 due
- // to round-off error, typically when beta -> +/-1 and phiby2 -> -/+pi/4.
- // This can happen for any alpha.
- final double z = a2p * (b2 + 2 * phiby2 * bb * tau) / (w * a2 * b2p);
- // Compute the exponential-type expression
- // Note: z may be infinite, typically when w->0 and a2->0.
- // This can produce NaN under certain parameterizations due to multiplication by 0.
- final double alogz = Math.log(z);
- final double d = SpecialMath.d2(epsDiv1mEps * alogz) * (alogz * inv1mEps);
- // Pre-compute the multiplication factor.
- // The numerator may be zero. The denominator is not zero as a2 is bounded to
- // above zero when the uniform deviate that generates phiby2 is not 0 or 1.
- // The min value of a2 is 2^-52. Assume f cannot be infinite as the numerator
- // is computed with a in (-1, 1); b in (-1, 1); phiby2 in (-pi/4, pi/4); tau in
- // [-2/pi, 2/pi]; bb in [1, 4/pi); a2 in (0, 1] limiting the numerator magnitude.
- final double f = (2 * ((a - b) * (1 + a * b) - phiby2 * tau * bb * (b * a2 - 2 * a))) /
- (a2 * b2p);
- // Compute the stable deviate:
- final double x = (1 + eps * d) * f + tau * d;
- // Test the support
- if (lower < x && x < upper) {
- return x;
- }
- // Error correction path:
- // x is at the bounds, infinite or NaN (created by 0 / 0, 0 * inf, or inf - inf).
- // This is caused by extreme parameterizations of alpha or beta, or extreme values
- // from the random deviates.
- // Alternatively alpha < 1 and beta = +/-1 and the sample x is at the edge or
- // outside the support due to floating point error.
- // Here we use the formula provided by Weron which is easier to correct
- // when deviates are extreme or alpha -> 0. The formula is not continuous
- // as alpha -> 1 without a shift which reduces the precision of the sample;
- // for rare edge case correction this has minimal effect on sampler output.
- return createSample(phiby2 * 2, w);
- }
- @Override
- public CMSStableSampler withUniformRandomProvider(UniformRandomProvider rng) {
- return new CMSStableSampler(rng, this);
- }
- }
- /**
- * Implement the stable distribution case: {@code alpha == 1} and {@code beta != 0}.
- *
- * <p>Implements the same algorithm as the {@link CMSStableSampler} with
- * the {@code alpha} assumed to be 1.
- *
- * <p>This sampler specifically requires that {@code beta / (pi/2) != 0}; otherwise
- * the parameters equal {@code alpha=1, beta=0} as the Cauchy distribution case.
- */
- static class Alpha1CMSStableSampler extends BaseStableSampler {
- /** Cache of expression value used in generation. */
- private final double tau;
- /**
- * @param rng Underlying source of randomness
- * @param beta Skewness parameter. Must be in the interval {@code [-1, 1]}.
- */
- Alpha1CMSStableSampler(UniformRandomProvider rng, double beta) {
- super(rng);
- tau = beta / PI_2;
- }
- /**
- * @param rng Underlying source of randomness
- * @param source Source to copy.
- */
- Alpha1CMSStableSampler(UniformRandomProvider rng, Alpha1CMSStableSampler source) {
- super(rng);
- this.tau = source.tau;
- }
- @Override
- public double sample() {
- final double phiby2 = getPhiBy2();
- final double w = getOmega();
- // Compute some tangents
- final double a = phiby2 * SpecialMath.tan2(phiby2);
- // Compute some necessary subexpressions
- final double da = a * a;
- final double a2 = 1 - da;
- final double a2p = 1 + da;
- // Compute coefficient.
- // numerator=0 is not possible when the uniform deviate generating phi
- // is in the open interval (0, 1) and alpha=1.
- final double z = a2p * (1 + 2 * phiby2 * tau) / (w * a2);
- // Compute the exponential-type expression
- // Note: z may be infinite, typically when w->0 and a2->0.
- // This can produce NaN under certain parameterizations due to multiplication by 0.
- // When alpha=1 the expression
- // d = d2((eps / (1-eps)) * alogz) * (alogz / (1-eps)) is eliminated to 1 * log(z)
- final double d = Math.log(z);
- // Pre-compute the multiplication factor.
- final double f = (2 * (a - phiby2 * tau * (-2 * a))) / a2;
- // Compute the stable deviate:
- // This does not require correction as f is finite (as per the alpha != 1 case),
- // tau is non-zero and only d can be infinite due to an extreme w -> 0.
- return f + tau * d;
- }
- @Override
- public Alpha1CMSStableSampler withUniformRandomProvider(UniformRandomProvider rng) {
- return new Alpha1CMSStableSampler(rng, this);
- }
- }
- /**
- * Implement the generic stable distribution case: {@code alpha < 2} and {@code beta == 0}.
- *
- * <p>Implements the same algorithm as the {@link WeronStableSampler} with
- * the {@code beta} assumed to be 0.
- *
- * <p>This routine assumes {@code alpha != 1}; {@code alpha=1, beta=0} is the Cauchy
- * distribution case.
- */
- static class Beta0WeronStableSampler extends BaseStableSampler {
- /** Epsilon (1 - alpha). */
- protected final double eps;
- /** Epsilon (1 - alpha). */
- protected final double meps1;
- /** 1 / alpha = 1 / (1 - eps). */
- protected final double inv1mEps;
- /** (1 / alpha) - 1 = eps / (1 - eps). */
- protected final double epsDiv1mEps;
- /**
- * @param rng Underlying source of randomness
- * @param alpha Stability parameter. Must be in the interval {@code (0, 2]}.
- */
- Beta0WeronStableSampler(UniformRandomProvider rng, double alpha) {
- super(rng);
- eps = 1 - alpha;
- meps1 = 1 - eps;
- inv1mEps = 1.0 / meps1;
- epsDiv1mEps = inv1mEps - 1;
- }
- /**
- * @param rng Underlying source of randomness
- * @param source Source to copy.
- */
- Beta0WeronStableSampler(UniformRandomProvider rng, Beta0WeronStableSampler source) {
- super(rng);
- this.eps = source.eps;
- this.meps1 = source.meps1;
- this.inv1mEps = source.inv1mEps;
- this.epsDiv1mEps = source.epsDiv1mEps;
- }
- @Override
- public double sample() {
- final double phi = getPhi();
- final double w = getOmega();
- return createSample(phi, w);
- }
- /**
- * Create the sample. This routine is robust to edge cases and returns a deviate
- * at the extremes of the support. It correctly handles {@code alpha -> 0} when
- * the sample is increasingly likely to be +/- infinity.
- *
- * @param phi Uniform deviate in {@code (-pi/2, pi/2)}
- * @param w Exponential deviate
- * @return x
- */
- protected double createSample(double phi, double w) {
- // As per the Weron sampler with beta=0 and terms eliminated.
- // Note that if alpha=1 this reduces to sin(phi) / cos(phi) => Cauchy case.
- // Compute terms.
- // Either term can be infinite or 0. Certain parameters compute 0 * inf.
- // Detect zeros and return as 0.
- // Note sin(alpha * phi) is only ever zero when phi=0. No value of alpha
- // multiplied by small phi can create zero due to the limited
- // precision of alpha imposed by alpha = 1 - (1-alpha). At this point cos(phi) = 1.
- // Thus 0/0 cannot occur.
- final double t1 = Math.sin(meps1 * phi) / Math.pow(Math.cos(phi), inv1mEps);
- if (t1 == 0) {
- return 0;
- }
- final double t2 = Math.pow(Math.cos(eps * phi) / w, epsDiv1mEps);
- if (t2 == 0) {
- return 0;
- }
- return t1 * t2;
- }
- @Override
- public Beta0WeronStableSampler withUniformRandomProvider(UniformRandomProvider rng) {
- return new Beta0WeronStableSampler(rng, this);
- }
- }
- /**
- * Implement the generic stable distribution case: {@code alpha < 2} and {@code beta == 0}.
- *
- * <p>Implements the same algorithm as the {@link CMSStableSampler} with
- * the {@code beta} assumed to be 0.
- *
- * <p>This routine assumes {@code alpha != 1}; {@code alpha=1, beta=0} is the Cauchy
- * distribution case.
- */
- static class Beta0CMSStableSampler extends Beta0WeronStableSampler {
- /**
- * @param rng Underlying source of randomness
- * @param alpha Stability parameter. Must be in the interval {@code (0, 2]}.
- */
- Beta0CMSStableSampler(UniformRandomProvider rng, double alpha) {
- super(rng, alpha);
- }
- /**
- * @param rng Underlying source of randomness
- * @param source Source to copy.
- */
- Beta0CMSStableSampler(UniformRandomProvider rng, Beta0CMSStableSampler source) {
- super(rng, source);
- }
- @Override
- public double sample() {
- final double phiby2 = getPhiBy2();
- final double w = getOmega();
- // Compute some tangents
- final double a = phiby2 * SpecialMath.tan2(phiby2);
- final double b = eps * phiby2 * SpecialMath.tan2(eps * phiby2);
- // Compute some necessary subexpressions
- final double da = a * a;
- final double db = b * b;
- final double a2 = 1 - da;
- final double a2p = 1 + da;
- final double b2 = 1 - db;
- final double b2p = 1 + db;
- // Compute coefficient.
- final double z = a2p * b2 / (w * a2 * b2p);
- // Compute the exponential-type expression
- final double alogz = Math.log(z);
- final double d = SpecialMath.d2(epsDiv1mEps * alogz) * (alogz * inv1mEps);
- // Pre-compute the multiplication factor.
- // The numerator may be zero. The denominator is not zero as a2 is bounded to
- // above zero when the uniform deviate that generates phiby2 is not 0 or 1.
- final double f = (2 * ((a - b) * (1 + a * b))) / (a2 * b2p);
- // Compute the stable deviate:
- final double x = (1 + eps * d) * f;
- // Test the support
- if (LOWER < x && x < UPPER) {
- return x;
- }
- // Error correction path.
- // Here we use the formula provided by Weron which is easier to correct
- // when deviates are extreme or alpha -> 0.
- return createSample(phiby2 * 2, w);
- }
- @Override
- public Beta0CMSStableSampler withUniformRandomProvider(UniformRandomProvider rng) {
- return new Beta0CMSStableSampler(rng, this);
- }
- }
- /**
- * Implement special math functions required by the CMS algorithm.
- */
- static final class SpecialMath {
- /** pi/4. */
- private static final double PI_4 = Math.PI / 4;
- /** 4/pi. */
- private static final double FOUR_PI = 4 / Math.PI;
- /** tan2 product constant. */
- private static final double P0 = -0.5712939549476836914932149599e10;
- /** tan2 product constant. */
- private static final double P1 = 0.4946855977542506692946040594e9;
- /** tan2 product constant. */
- private static final double P2 = -0.9429037070546336747758930844e7;
- /** tan2 product constant. */
- private static final double P3 = 0.5282725819868891894772108334e5;
- /** tan2 product constant. */
- private static final double P4 = -0.6983913274721550913090621370e2;
- /** tan2 quotient constant. */
- private static final double Q0 = -0.7273940551075393257142652672e10;
- /** tan2 quotient constant. */
- private static final double Q1 = 0.2125497341858248436051062591e10;
- /** tan2 quotient constant. */
- private static final double Q2 = -0.8000791217568674135274814656e8;
- /** tan2 quotient constant. */
- private static final double Q3 = 0.8232855955751828560307269007e6;
- /** tan2 quotient constant. */
- private static final double Q4 = -0.2396576810261093558391373322e4;
- /**
- * The threshold to switch to using {@link Math#expm1(double)}. The following
- * table shows the mean (max) ULP difference between using expm1 and exp using
- * random +/-x with different exponents (n=2^30):
- *
- * <pre>
- * x exp positive x negative x
- * 64.0 6 0.10004021506756544 (2) 0.0 (0)
- * 32.0 5 0.11177831795066595 (2) 0.0 (0)
- * 16.0 4 0.0986650362610817 (2) 9.313225746154785E-10 (1)
- * 8.0 3 0.09863092936575413 (2) 4.9658119678497314E-6 (1)
- * 4.0 2 0.10015273280441761 (2) 4.547201097011566E-4 (1)
- * 2.0 1 0.14359260816127062 (2) 0.005623611621558666 (2)
- * 1.0 0 0.20160607434809208 (2) 0.03312791418284178 (2)
- * 0.5 -1 0.3993037799373269 (2) 0.28186883218586445 (2)
- * 0.25 -2 0.6307008266448975 (2) 0.5192863345146179 (2)
- * 0.125 -3 1.3862918205559254 (4) 1.386285437270999 (4)
- * 0.0625 -4 2.772640804760158 (8) 2.772612397558987 (8)
- * </pre>
- *
- * <p>The threshold of 0.5 has a mean ULP below 0.5 and max ULP of 2. The
- * transition is monotonic. Neither is true for the next threshold of 0.25.
- */
- private static final double SWITCH_TO_EXPM1 = 0.5;
- /** No instances. */
- private SpecialMath() {}
- /**
- * Evaluate {@code (exp(x) - 1) / x}. For {@code x} in the range {@code [-inf, inf]} returns
- * a result in {@code [0, inf]}.
- *
- * <ul>
- * <li>For {@code x=-inf} this returns {@code 0}.
- * <li>For {@code x=0} this returns {@code 1}.
- * <li>For {@code x=inf} this returns {@code inf}.
- * <li>For {@code x=nan} this returns {@code nan}.
- * </ul>
- *
- * <p> This corrects {@code 0 / 0} and {@code inf / inf} division from
- * {@code NaN} to either {@code 1} or the upper bound respectively.
- *
- * @param x value to evaluate
- * @return {@code (exp(x) - 1) / x}.
- */
- static double d2(double x) {
- // Here expm1 is only used when use of expm1 and exp consistently
- // compute different results by more than 0.5 ULP.
- if (Math.abs(x) < SWITCH_TO_EXPM1) {
- // Deliberate comparison to floating-point zero
- if (x == 0) {
- // Avoid 0 / 0 error
- return 1.0;
- }
- return Math.expm1(x) / x;
- }
- // No use of expm1. Accuracy as x moves away from 0 is not required as the result
- // is divided by x and the accuracy of the final result is within a few ULP.
- if (x < Double.POSITIVE_INFINITY) {
- return (Math.exp(x) - 1) / x;
- }
- // Upper bound (or NaN)
- return x;
- }
- /**
- * Evaluate {@code tan(x) / x}.
- *
- * <p>For {@code x} in the range {@code [0, pi/4]} this returns
- * a value in the range {@code [1, 4 / pi]}.
- *
- * <p>The following properties are desirable for the CMS algorithm:
- *
- * <ul>
- * <li>For {@code x=0} this returns {@code 1}.
- * <li>For {@code x=pi/4} this returns {@code 4/pi}.
- * <li>For {@code x=pi/4} this multiplied by {@code x} returns {@code 1}.
- * </ul>
- *
- * <p>This method is called by the CMS algorithm when {@code x < pi/4}.
- * In this case the method is almost as accurate as {@code Math.tan(x) / x}, does
- * not require checking for {@code x=0} and is faster.
- *
- * @param x the x
- * @return {@code tan(x) / x}.
- */
- static double tan2(double x) {
- if (Math.abs(x) > PI_4) {
- // Reduction is not supported. Delegate to the JDK.
- return Math.tan(x) / x;
- }
- // Testing with approximation 4283 from Hart et al, as used in the RSTAB
- // routine, showed the method was not accurate enough for use with
- // double computation. Hart et al state it has max relative error = 1e-10.66.
- // For tan(x) / x with x in [0, pi/4] values outside [1, 4/pi] were computed.
- // When testing verses Math.tan(x) the mean ULP difference is 93436.3.
- // Approximation 4288 from Hart et al (1968, P. 252).
- // Max relative error = 1e-26.68 (for tan(x)).
- // When testing verses Math.tan(x) the mean ULP difference is 0.590597.
- // The approximation is defined as:
- // tan(x*pi/4) = x * P(x^2) / Q(x^2)
- // with P and Q polynomials of x squared.
- //
- // To create tan(x):
- // tan(x) = xi * P(xi^2) / Q(xi^2), xi = x * 4/pi
- // tan(x) / x = xi * P(xi^2) / Q(xi^2) / x
- // tan(x) / x = 4/pi * (P(xi^2) / Q(xi^2))
- // = P(xi^2) / (pi/4 * Q(xi^2))
- // The later has a smaller mean ULP difference to Math.tan(x) / x.
- final double xi = x * FOUR_PI;
- // Use the power form with a reverse summation order to have smaller
- // magnitude terms first. Note: x < 1 so greater powers are smaller.
- // This has essentially the same accuracy as the nested form of the polynomials
- // for a marginal performance increase. See JMH examples for performance tests.
- final double x2 = xi * xi;
- final double x4 = x2 * x2;
- final double x6 = x4 * x2;
- final double x8 = x4 * x4;
- return (x8 * P4 + x6 * P3 + x4 * P2 + x2 * P1 + P0) /
- (PI_4 * (x8 * x2 + x8 * Q4 + x6 * Q3 + x4 * Q2 + x2 * Q1 + Q0));
- }
- }
- /**
- * @param rng Generator of uniformly distributed random numbers.
- */
- StableSampler(UniformRandomProvider rng) {
- this.rng = rng;
- }
- /**
- * Generate a sample from a stable distribution.
- *
- * <p>The distribution uses the 0-parameterization: S(alpha, beta, gamma, delta; 0).
- */
- @Override
- public abstract double sample();
- /** {@inheritDoc} */
- // Redeclare the signature to return a StableSampler not a SharedStateContinuousSampler
- @Override
- public abstract StableSampler withUniformRandomProvider(UniformRandomProvider rng);
- /**
- * Generates a {@code long} value.
- * Used by algorithm implementations without exposing access to the RNG.
- *
- * @return the next random value
- */
- long nextLong() {
- return rng.nextLong();
- }
- /** {@inheritDoc} */
- @Override
- public String toString() {
- // All variations use the same string representation, i.e. no changes
- // for the Gaussian, Levy or Cauchy case.
- return "Stable deviate [" + rng.toString() + "]";
- }
- /**
- * Creates a standardized sampler of a stable distribution with zero location and unit scale.
- *
- * <p>Special cases:
- *
- * <ul>
- * <li>{@code alpha=2} returns a Gaussian distribution sampler with
- * {@code mean=0} and {@code variance=2} (Note: {@code beta} has no effect on the distribution).
- * <li>{@code alpha=1} and {@code beta=0} returns a Cauchy distribution sampler with
- * {@code location=0} and {@code scale=1}.
- * <li>{@code alpha=0.5} and {@code beta=1} returns a Levy distribution sampler with
- * {@code location=-1} and {@code scale=1}. This location shift is due to the
- * 0-parameterization of the stable distribution.
- * </ul>
- *
- * <p>Note: To allow the computation of the stable distribution the parameter alpha
- * is validated using {@code 1 - alpha} in the interval {@code [-1, 1)}.
- *
- * @param rng Generator of uniformly distributed random numbers.
- * @param alpha Stability parameter. Must be in the interval {@code (0, 2]}.
- * @param beta Skewness parameter. Must be in the interval {@code [-1, 1]}.
- * @return the sampler
- * @throws IllegalArgumentException if {@code 1 - alpha < -1}; or {@code 1 - alpha >= 1};
- * or {@code beta < -1}; or {@code beta > 1}.
- */
- public static StableSampler of(UniformRandomProvider rng,
- double alpha,
- double beta) {
- validateParameters(alpha, beta);
- return create(rng, alpha, beta);
- }
- /**
- * Creates a sampler of a stable distribution. This applies a transformation to the
- * standardized sampler.
- *
- * <p>The random variable \( X \) has
- * the stable distribution \( S(\alpha, \beta, \gamma, \delta; 0) \) if:
- *
- * <p>\[ X = \gamma Z_0 + \delta \]
- *
- * <p>where \( Z_0 = S(\alpha, \beta; 0) \) is a standardized stable distribution.
- *
- * <p>Note: To allow the computation of the stable distribution the parameter alpha
- * is validated using {@code 1 - alpha} in the interval {@code [-1, 1)}.
- *
- * @param rng Generator of uniformly distributed random numbers.
- * @param alpha Stability parameter. Must be in the interval {@code (0, 2]}.
- * @param beta Skewness parameter. Must be in the interval {@code [-1, 1]}.
- * @param gamma Scale parameter. Must be strictly positive and finite.
- * @param delta Location parameter. Must be finite.
- * @return the sampler
- * @throws IllegalArgumentException if {@code 1 - alpha < -1}; or {@code 1 - alpha >= 1};
- * or {@code beta < -1}; or {@code beta > 1}; or {@code gamma <= 0}; or
- * {@code gamma} or {@code delta} are not finite.
- * @see #of(UniformRandomProvider, double, double)
- */
- public static StableSampler of(UniformRandomProvider rng,
- double alpha,
- double beta,
- double gamma,
- double delta) {
- validateParameters(alpha, beta, gamma, delta);
- // Choose the algorithm.
- // Reuse the special cases as they have transformation support.
- if (alpha == ALPHA_GAUSSIAN) {
- // Note: beta has no effect and is ignored.
- return new GaussianStableSampler(rng, gamma, delta);
- }
- // Note: As beta -> 0 the result cannot be computed differently to beta = 0.
- if (alpha == ALPHA_CAUCHY && CMSStableSampler.getTau(ALPHA_CAUCHY, beta) == TAU_ZERO) {
- return new CauchyStableSampler(rng, gamma, delta);
- }
- if (alpha == ALPHA_LEVY && Math.abs(beta) == BETA_LEVY) {
- // Support mirroring for negative beta by inverting the beta=1 Levy sample
- // using a negative gamma. Note: The delta is not mirrored as it is a shift
- // applied to the scaled and mirrored distribution.
- return new LevyStableSampler(rng, beta * gamma, delta);
- }
- // Standardized sampler
- final StableSampler sampler = create(rng, alpha, beta);
- // Transform
- return new TransformedStableSampler(sampler, gamma, delta);
- }
- /**
- * Creates a standardized sampler of a stable distribution with zero location and unit scale.
- *
- * @param rng Generator of uniformly distributed random numbers.
- * @param alpha Stability parameter. Must be in the interval {@code (0, 2]}.
- * @param beta Skewness parameter. Must be in the interval {@code [-1, 1]}.
- * @return the sampler
- */
- private static StableSampler create(UniformRandomProvider rng,
- double alpha,
- double beta) {
- // Choose the algorithm.
- // The special case samplers have transformation support and use gamma=1.0, delta=0.0.
- // As alpha -> 0 the computation increasingly requires correction
- // of infinity to the distribution support.
- if (alpha == ALPHA_GAUSSIAN) {
- // Note: beta has no effect and is ignored.
- return new GaussianStableSampler(rng, GAMMA_1, DELTA_0);
- }
- // Note: As beta -> 0 the result cannot be computed differently to beta = 0.
- // This is based on the computation factor tau:
- final double tau = CMSStableSampler.getTau(alpha, beta);
- if (tau == TAU_ZERO) {
- // Symmetric case (beta skew parameter is effectively zero)
- if (alpha == ALPHA_CAUCHY) {
- return new CauchyStableSampler(rng, GAMMA_1, DELTA_0);
- }
- if (alpha <= ALPHA_SMALL) {
- // alpha -> 0 requires robust error correction
- return new Beta0WeronStableSampler(rng, alpha);
- }
- return new Beta0CMSStableSampler(rng, alpha);
- }
- // Here beta is significant.
- if (alpha == 1) {
- return new Alpha1CMSStableSampler(rng, beta);
- }
- if (alpha == ALPHA_LEVY && Math.abs(beta) == BETA_LEVY) {
- // Support mirroring for negative beta by inverting the beta=1 Levy sample
- // using a negative gamma. Note: The delta is not mirrored as it is a shift
- // applied to the scaled and mirrored distribution.
- return new LevyStableSampler(rng, beta, DELTA_0);
- }
- if (alpha <= ALPHA_SMALL) {
- // alpha -> 0 requires robust error correction
- return new WeronStableSampler(rng, alpha, beta);
- }
- return new CMSStableSampler(rng, alpha, beta);
- }
- /**
- * Validate the parameters are in the correct range.
- *
- * @param alpha Stability parameter. Must be in the interval {@code (0, 2]}.
- * @param beta Skewness parameter. Must be in the interval {@code [-1, 1]}.
- * @throws IllegalArgumentException if {@code 1 - alpha < -1}; or {@code 1 - alpha >= 1};
- * or {@code beta < -1}; or {@code beta > 1}.
- */
- private static void validateParameters(double alpha, double beta) {
- // The epsilon (1-alpha) value must be in the interval [-1, 1).
- // Logic inversion will identify NaN
- final double eps = 1 - alpha;
- if (!(-1 <= eps && eps < 1)) {
- throw new IllegalArgumentException("alpha is not in the interval (0, 2]: " + alpha);
- }
- if (!(-1 <= beta && beta <= 1)) {
- throw new IllegalArgumentException("beta is not in the interval [-1, 1]: " + beta);
- }
- }
- /**
- * Validate the parameters are in the correct range.
- *
- * @param alpha Stability parameter. Must be in the interval {@code (0, 2]}.
- * @param beta Skewness parameter. Must be in the interval {@code [-1, 1]}.
- * @param gamma Scale parameter. Must be strictly positive and finite.
- * @param delta Location parameter. Must be finite.
- * @throws IllegalArgumentException if {@code 1 - alpha < -1}; or {@code 1 - alpha >= 1};
- * or {@code beta < -1}; or {@code beta > 1}; or {@code gamma <= 0}; or
- * {@code gamma} or {@code delta} are not finite.
- */
- private static void validateParameters(double alpha, double beta,
- double gamma, double delta) {
- validateParameters(alpha, beta);
- InternalUtils.requireStrictlyPositiveFinite(gamma, "gamma");
- InternalUtils.requireFinite(delta, "delta");
- }
- }