TSampler.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.rng.sampling.distribution;
- import java.util.function.DoubleUnaryOperator;
- import org.apache.commons.rng.UniformRandomProvider;
- /**
- * Sampling from a T distribution.
- *
- * <p>Uses Bailey's algorithm for t-distribution sampling:</p>
- *
- * <blockquote>
- * <pre>
- * Bailey, R. W. (1994)
- * "Polar Generation of Random Variates with the t-Distribution."
- * Mathematics of Computation 62, 779-781.
- * </pre>
- * </blockquote>
- *
- * <p>Sampling uses {@link UniformRandomProvider#nextLong()}.</p>
- *
- * @see <a href="https://en.wikipedia.org/wiki/Student%27s_t-distribution">Student's T distribution (wikipedia)</a>
- * @see <a href="https://doi.org/10.2307/2153537">Mathematics of Computation, 62, 779-781</a>
- * @since 1.5
- */
- public abstract class TSampler implements SharedStateContinuousSampler {
- /** Threshold for huge degrees of freedom. Above this value the CDF of the t distribution
- * matches the normal distribution. Value is 2/eps (where eps is the machine epsilon)
- * or approximately 9.0e15. */
- private static final double HUGE_DF = 0x1.0p53;
- /** Source of randomness. */
- private final UniformRandomProvider rng;
- /**
- * Sample from a t-distribution using Bailey's algorithm.
- */
- private static final class StudentsTSampler extends TSampler {
- /** Threshold for large degrees of freedom. */
- private static final double LARGE_DF = 25;
- /** The multiplier to convert the least significant 53-bits of a {@code long} to a
- * uniform {@code double}. */
- private static final double DOUBLE_MULTIPLIER = 0x1.0p-53;
- /** Degrees of freedom. */
- private final double df;
- /** Function to compute pow(x, -2/v) - 1, where v = degrees of freedom. */
- private final DoubleUnaryOperator powm1;
- /**
- * @param rng Generator of uniformly distributed random numbers.
- * @param v Degrees of freedom.
- */
- StudentsTSampler(UniformRandomProvider rng,
- double v) {
- super(rng);
- df = v;
- // The sampler requires pow(w, -2/v) - 1 with
- // 0 <= w <= 1; Expected(w) = sqrt(0.5).
- // When the exponent is small then pow(x, y) -> 1.
- // This affects large degrees of freedom.
- final double exponent = -2 / v;
- powm1 = v > LARGE_DF ?
- x -> Math.expm1(Math.log(x) * exponent) :
- x -> Math.pow(x, exponent) - 1;
- }
- /**
- * @param rng Generator of uniformly distributed random numbers.
- * @param source Source to copy.
- */
- private StudentsTSampler(UniformRandomProvider rng,
- StudentsTSampler source) {
- super(rng);
- df = source.df;
- powm1 = source.powm1;
- }
- /** {@inheritDoc} */
- @Override
- public double sample() {
- // Require u and v in [0, 1] and a random sign.
- // Create u in (0, 1] to avoid generating nan
- // from u*u/w (0/0) or r2*c2 (inf*0).
- final double u = InternalUtils.makeNonZeroDouble(nextLong());
- final double v = makeSignedDouble(nextLong());
- final double w = u * u + v * v;
- if (w > 1) {
- // Rejection frequency = 1 - pi/4 = 0.215.
- // Recursion will generate stack overflow given a broken RNG
- // and avoids an infinite loop.
- return sample();
- }
- // Sidestep a square-root calculation.
- final double c2 = u * u / w;
- final double r2 = df * powm1.applyAsDouble(w);
- // Choose sign at random from the sign of v.
- return Math.copySign(Math.sqrt(r2 * c2), v);
- }
- /** {@inheritDoc} */
- @Override
- public StudentsTSampler withUniformRandomProvider(UniformRandomProvider rng) {
- return new StudentsTSampler(rng, this);
- }
- /**
- * Creates a signed double in the range {@code [-1, 1)}. The magnitude is sampled evenly
- * from the 2<sup>54</sup> dyadic rationals in the range.
- *
- * <p>Note: This method will not return samples for both -0.0 and 0.0.
- *
- * @param bits the bits
- * @return the double
- */
- private static double makeSignedDouble(long bits) {
- // As per o.a.c.rng.core.utils.NumberFactory.makeDouble(long) but using a signed
- // shift of 10 in place of an unsigned shift of 11.
- // Use the upper 54 bits on the assumption they are more random.
- // The sign bit is maintained by the signed shift.
- // The next 53 bits generates a magnitude in the range [0, 2^53) or [-2^53, 0).
- return (bits >> 10) * DOUBLE_MULTIPLIER;
- }
- }
- /**
- * Sample from a t-distribution using a normal distribution.
- * This is used when the degrees of freedom is extremely large (e.g. {@code > 1e16}).
- */
- private static final class NormalTSampler extends TSampler {
- /** Underlying normalized Gaussian sampler. */
- private final NormalizedGaussianSampler sampler;
- /**
- * @param rng Generator of uniformly distributed random numbers.
- */
- NormalTSampler(UniformRandomProvider rng) {
- super(rng);
- this.sampler = ZigguratSampler.NormalizedGaussian.of(rng);
- }
- /** {@inheritDoc} */
- @Override
- public double sample() {
- return sampler.sample();
- }
- /** {@inheritDoc} */
- @Override
- public NormalTSampler withUniformRandomProvider(UniformRandomProvider rng) {
- return new NormalTSampler(rng);
- }
- }
- /**
- * @param rng Generator of uniformly distributed random numbers.
- */
- TSampler(UniformRandomProvider rng) {
- this.rng = rng;
- }
- /** {@inheritDoc} */
- // Redeclare the signature to return a TSampler not a SharedStateContinuousSampler
- @Override
- public abstract TSampler withUniformRandomProvider(UniformRandomProvider rng);
- /**
- * Generates a {@code long} value.
- * Used by algorithm implementations without exposing access to the RNG.
- *
- * @return the next random value
- */
- long nextLong() {
- return rng.nextLong();
- }
- /** {@inheritDoc} */
- @Override
- public String toString() {
- return "Student's t deviate [" + rng.toString() + "]";
- }
- /**
- * Create a new t distribution sampler.
- *
- * @param rng Generator of uniformly distributed random numbers.
- * @param degreesOfFreedom Degrees of freedom.
- * @return the sampler
- * @throws IllegalArgumentException if {@code degreesOfFreedom <= 0}
- */
- public static TSampler of(UniformRandomProvider rng,
- double degreesOfFreedom) {
- if (degreesOfFreedom > HUGE_DF) {
- return new NormalTSampler(rng);
- } else if (degreesOfFreedom > 0) {
- return new StudentsTSampler(rng, degreesOfFreedom);
- } else {
- // df <= 0 or nan
- throw new IllegalArgumentException(
- "degrees of freedom is not strictly positive: " + degreesOfFreedom);
- }
- }
- }