001/* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017 018package org.apache.commons.rng.sampling; 019 020import org.apache.commons.rng.UniformRandomProvider; 021import org.apache.commons.rng.sampling.distribution.NormalizedGaussianSampler; 022import org.apache.commons.rng.sampling.distribution.ZigguratNormalizedGaussianSampler; 023 024/** 025 * Generate vectors <a href="http://mathworld.wolfram.com/SpherePointPicking.html"> 026 * isotropically located on the surface of a sphere</a>. 027 * 028 * @since 1.1 029 */ 030public class UnitSphereSampler { 031 /** Sampler used for generating the individual components of the vectors. */ 032 private final NormalizedGaussianSampler sampler; 033 /** Space dimension. */ 034 private final int dimension; 035 036 /** 037 * @param dimension Space dimension. 038 * @param rng Generator for the individual components of the vectors. 039 * A shallow copy will be stored in this instance. 040 */ 041 public UnitSphereSampler(int dimension, 042 UniformRandomProvider rng) { 043 if (dimension <= 0) { 044 throw new IllegalArgumentException("Dimension must be strictly positive"); 045 } 046 047 this.dimension = dimension; 048 sampler = new ZigguratNormalizedGaussianSampler(rng); 049 } 050 051 /** 052 * @return a random normalized Cartesian vector. 053 */ 054 public double[] nextVector() { 055 final double[] v = new double[dimension]; 056 057 // Pick a point by choosing a standard Gaussian for each element, 058 // and then normalize to unit length. 059 double normSq = 0; 060 for (int i = 0; i < dimension; i++) { 061 final double comp = sampler.sample(); 062 v[i] = comp; 063 normSq += comp * comp; 064 } 065 066 if (normSq == 0) { 067 // Zero-norm vector is discarded. 068 // Using recursion as it is highly unlikely to generate more 069 // than a few such vectors. It also protects against infinite 070 // loop (in case a buggy generator is used), by eventually 071 // raising a "StackOverflowError". 072 return nextVector(); 073 } 074 075 final double f = 1 / Math.sqrt(normSq); 076 for (int i = 0; i < dimension; i++) { 077 v[i] *= f; 078 } 079 080 return v; 081 } 082}