001/* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017package org.apache.commons.rng.sampling.distribution; 018 019import org.apache.commons.rng.UniformRandomProvider; 020 021/** 022 * <a href="https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform"> 023 * Box-Muller algorithm</a> for sampling from a Gaussian distribution. 024 * 025 * @since 1.0 026 * 027 * @deprecated Since version 1.1. Please use {@link BoxMullerNormalizedGaussianSampler} 028 * and {@link GaussianSampler} instead. 029 */ 030@Deprecated 031public class BoxMullerGaussianSampler 032 extends SamplerBase 033 implements ContinuousSampler { 034 /** Next gaussian. */ 035 private double nextGaussian = Double.NaN; 036 /** Mean. */ 037 private final double mean; 038 /** standardDeviation. */ 039 private final double standardDeviation; 040 /** Underlying source of randomness. */ 041 private final UniformRandomProvider rng; 042 043 /** 044 * @param rng Generator of uniformly distributed random numbers. 045 * @param mean Mean of the Gaussian distribution. 046 * @param standardDeviation Standard deviation of the Gaussian distribution. 047 */ 048 public BoxMullerGaussianSampler(UniformRandomProvider rng, 049 double mean, 050 double standardDeviation) { 051 super(null); 052 this.rng = rng; 053 this.mean = mean; 054 this.standardDeviation = standardDeviation; 055 } 056 057 /** {@inheritDoc} */ 058 @Override 059 public double sample() { 060 final double random; 061 if (Double.isNaN(nextGaussian)) { 062 // Generate a pair of Gaussian numbers. 063 064 final double x = rng.nextDouble(); 065 final double y = rng.nextDouble(); 066 final double alpha = 2 * Math.PI * x; 067 final double r = Math.sqrt(-2 * Math.log(y)); 068 069 // Return the first element of the generated pair. 070 random = r * Math.cos(alpha); 071 072 // Keep second element of the pair for next invocation. 073 nextGaussian = r * Math.sin(alpha); 074 } else { 075 // Use the second element of the pair (generated at the 076 // previous invocation). 077 random = nextGaussian; 078 079 // Both elements of the pair have been used. 080 nextGaussian = Double.NaN; 081 } 082 083 return standardDeviation * random + mean; 084 } 085 086 /** {@inheritDoc} */ 087 @Override 088 public String toString() { 089 return "Box-Muller Gaussian deviate [" + rng.toString() + "]"; 090 } 091}