001/*
002 * Licensed to the Apache Software Foundation (ASF) under one or more
003 * contributor license agreements.  See the NOTICE file distributed with
004 * this work for additional information regarding copyright ownership.
005 * The ASF licenses this file to You under the Apache License, Version 2.0
006 * (the "License"); you may not use this file except in compliance with
007 * the License.  You may obtain a copy of the License at
008 *
009 *      http://www.apache.org/licenses/LICENSE-2.0
010 *
011 * Unless required by applicable law or agreed to in writing, software
012 * distributed under the License is distributed on an "AS IS" BASIS,
013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
014 * See the License for the specific language governing permissions and
015 * limitations under the License.
016 */
017package org.apache.commons.rng.sampling.distribution;
018
019import org.apache.commons.rng.UniformRandomProvider;
020import org.apache.commons.rng.sampling.distribution.InternalUtils.FactorialLog;
021
022/**
023 * Sampler for the <a href="http://mathworld.wolfram.com/PoissonDistribution.html">Poisson distribution</a>.
024 *
025 * <ul>
026 *  <li>
027 *   For large means, we use the rejection algorithm described in
028 *   <blockquote>
029 *    Devroye, Luc. (1981).<i>The Computer Generation of Poisson Random Variables</i><br>
030 *    <strong>Computing</strong> vol. 26 pp. 197-207.
031 *   </blockquote>
032 *  </li>
033 * </ul>
034 *
035 * @since 1.1
036 *
037 * This sampler is suitable for {@code mean >= 40}.
038 */
039public class LargeMeanPoissonSampler
040    implements DiscreteSampler {
041    /** Upper bound to avoid truncation. */
042    private static final double MAX_MEAN = 0.5 * Integer.MAX_VALUE;
043    /** Class to compute {@code log(n!)}. This has no cached values. */
044    private static final InternalUtils.FactorialLog NO_CACHE_FACTORIAL_LOG;
045    /** Used when there is no requirement for a small mean Poisson sampler. */
046    private static final DiscreteSampler NO_SMALL_MEAN_POISSON_SAMPLER = null;
047
048    static {
049        // Create without a cache.
050        NO_CACHE_FACTORIAL_LOG = FactorialLog.create();
051    }
052
053    /** Underlying source of randomness. */
054    private final UniformRandomProvider rng;
055    /** Exponential. */
056    private final ContinuousSampler exponential;
057    /** Gaussian. */
058    private final ContinuousSampler gaussian;
059    /** Local class to compute {@code log(n!)}. This may have cached values. */
060    private final InternalUtils.FactorialLog factorialLog;
061
062    // Working values
063
064    /** Algorithm constant: {@code Math.floor(mean)}. */
065    private final double lambda;
066    /** Algorithm constant: {@code Math.log(lambda)}. */
067    private final double logLambda;
068    /** Algorithm constant: {@code factorialLog((int) lambda)}. */
069    private final double logLambdaFactorial;
070    /** Algorithm constant: {@code Math.sqrt(lambda * Math.log(32 * lambda / Math.PI + 1))}. */
071    private final double delta;
072    /** Algorithm constant: {@code delta / 2}. */
073    private final double halfDelta;
074    /** Algorithm constant: {@code 2 * lambda + delta}. */
075    private final double twolpd;
076    /**
077     * Algorithm constant: {@code a1 / aSum} with
078     * <ul>
079     *  <li>{@code a1 = Math.sqrt(Math.PI * twolpd) * Math.exp(c1)}</li>
080     *  <li>{@code aSum = a1 + a2 + 1}</li>
081     * </ul>
082     */
083    private final double p1;
084    /**
085     * Algorithm constant: {@code a2 / aSum} with
086     * <ul>
087     *  <li>{@code a2 = (twolpd / delta) * Math.exp(-delta * (1 + delta) / twolpd)}</li>
088     *  <li>{@code aSum = a1 + a2 + 1}</li>
089     * </ul>
090     */
091    private final double p2;
092    /** Algorithm constant: {@code 1 / (8 * lambda)}. */
093    private final double c1;
094
095    /** The internal Poisson sampler for the lambda fraction. */
096    private final DiscreteSampler smallMeanPoissonSampler;
097
098    /**
099     * @param rng Generator of uniformly distributed random numbers.
100     * @param mean Mean.
101     * @throws IllegalArgumentException if {@code mean <= 0} or
102     * {@code mean > 0.5 *} {@link Integer#MAX_VALUE}.
103     */
104    public LargeMeanPoissonSampler(UniformRandomProvider rng,
105                                   double mean) {
106        if (mean <= 0) {
107          throw new IllegalArgumentException(mean + " <= " + 0);
108        }
109        // The algorithm is not valid if Math.floor(mean) is not an integer.
110        if (mean > MAX_MEAN) {
111            throw new IllegalArgumentException(mean + " > " + MAX_MEAN);
112        }
113        this.rng = rng;
114
115        gaussian = new ZigguratNormalizedGaussianSampler(rng);
116        exponential = new AhrensDieterExponentialSampler(rng, 1);
117        // Plain constructor uses the uncached function.
118        factorialLog = NO_CACHE_FACTORIAL_LOG;
119
120        // Cache values used in the algorithm
121        lambda = Math.floor(mean);
122        logLambda = Math.log(lambda);
123        logLambdaFactorial = factorialLog((int) lambda);
124        delta = Math.sqrt(lambda * Math.log(32 * lambda / Math.PI + 1));
125        halfDelta = delta / 2;
126        twolpd = 2 * lambda + delta;
127        c1 = 1 / (8 * lambda);
128        final double a1 = Math.sqrt(Math.PI * twolpd) * Math.exp(c1);
129        final double a2 = (twolpd / delta) * Math.exp(-delta * (1 + delta) / twolpd);
130        final double aSum = a1 + a2 + 1;
131        p1 = a1 / aSum;
132        p2 = a2 / aSum;
133
134        // The algorithm requires a Poisson sample from the remaining lambda fraction.
135        final double lambdaFractional = mean - lambda;
136        smallMeanPoissonSampler = (lambdaFractional < Double.MIN_VALUE) ?
137            NO_SMALL_MEAN_POISSON_SAMPLER : // Not used.
138            new SmallMeanPoissonSampler(rng, lambdaFractional);
139    }
140
141    /**
142     * Instantiates a sampler using a precomputed state.
143     *
144     * @param rng              Generator of uniformly distributed random numbers.
145     * @param state            The state for {@code lambda = (int)Math.floor(mean)}.
146     * @param lambdaFractional The lambda fractional value
147     *                         ({@code mean - (int)Math.floor(mean))}.
148     * @throws IllegalArgumentException
149     *                         if {@code lambdaFractional < 0 || lambdaFractional >= 1}.
150     */
151    LargeMeanPoissonSampler(UniformRandomProvider rng,
152                            LargeMeanPoissonSamplerState state,
153                            double lambdaFractional) {
154        if (lambdaFractional < 0 || lambdaFractional >= 1) {
155            throw new IllegalArgumentException(
156                    "lambdaFractional must be in the range 0 (inclusive) to 1 (exclusive): " + lambdaFractional);
157        }
158        this.rng = rng;
159
160        gaussian = new ZigguratNormalizedGaussianSampler(rng);
161        exponential = new AhrensDieterExponentialSampler(rng, 1);
162        // Plain constructor uses the uncached function.
163        factorialLog = NO_CACHE_FACTORIAL_LOG;
164
165        // Use the state to initialise the algorithm
166        lambda = state.getLambdaRaw();
167        logLambda = state.getLogLambda();
168        logLambdaFactorial = state.getLogLambdaFactorial();
169        delta = state.getDelta();
170        halfDelta = state.getHalfDelta();
171        twolpd = state.getTwolpd();
172        p1 = state.getP1();
173        p2 = state.getP2();
174        c1 = state.getC1();
175
176        // The algorithm requires a Poisson sample from the remaining lambda fraction.
177        smallMeanPoissonSampler = (lambdaFractional < Double.MIN_VALUE) ?
178            NO_SMALL_MEAN_POISSON_SAMPLER : // Not used.
179            new SmallMeanPoissonSampler(rng, lambdaFractional);
180    }
181
182    /** {@inheritDoc} */
183    @Override
184    public int sample() {
185
186        final int y2 = (smallMeanPoissonSampler == null) ?
187            0 : // No lambda fraction
188            smallMeanPoissonSampler.sample();
189
190        double x = 0;
191        double y = 0;
192        double v = 0;
193        int a = 0;
194        double t = 0;
195        double qr = 0;
196        double qa = 0;
197        while (true) {
198            final double u = rng.nextDouble();
199            if (u <= p1) {
200                final double n = gaussian.sample();
201                x = n * Math.sqrt(lambda + halfDelta) - 0.5d;
202                if (x > delta || x < -lambda) {
203                    continue;
204                }
205                y = x < 0 ? Math.floor(x) : Math.ceil(x);
206                final double e = exponential.sample();
207                v = -e - 0.5 * n * n + c1;
208            } else {
209                if (u > p1 + p2) {
210                    y = lambda;
211                    break;
212                }
213                x = delta + (twolpd / delta) * exponential.sample();
214                y = Math.ceil(x);
215                v = -exponential.sample() - delta * (x + 1) / twolpd;
216            }
217            a = x < 0 ? 1 : 0;
218            t = y * (y + 1) / (2 * lambda);
219            if (v < -t && a == 0) {
220                y = lambda + y;
221                break;
222            }
223            qr = t * ((2 * y + 1) / (6 * lambda) - 1);
224            qa = qr - (t * t) / (3 * (lambda + a * (y + 1)));
225            if (v < qa) {
226                y = lambda + y;
227                break;
228            }
229            if (v > qr) {
230                continue;
231            }
232            if (v < y * logLambda - factorialLog((int) (y + lambda)) + logLambdaFactorial) {
233                y = lambda + y;
234                break;
235            }
236        }
237
238        return (int) Math.min(y2 + (long) y, Integer.MAX_VALUE);
239    }
240
241    /**
242     * Compute the natural logarithm of the factorial of {@code n}.
243     *
244     * @param n Argument.
245     * @return {@code log(n!)}
246     * @throws IllegalArgumentException if {@code n < 0}.
247     */
248    private double factorialLog(int n) {
249        return factorialLog.value(n);
250    }
251
252    /** {@inheritDoc} */
253    @Override
254    public String toString() {
255        return "Large Mean Poisson deviate [" + rng.toString() + "]";
256    }
257
258    /**
259     * Gets the initialisation state of the sampler.
260     *
261     * <p>The state is computed using an integer {@code lambda} value of
262     * {@code lambda = (int)Math.floor(mean)}.
263     *
264     * <p>The state will be suitable for reconstructing a new sampler with a mean
265     * in the range {@code lambda <= mean < lambda+1} using
266     * {@link #LargeMeanPoissonSampler(UniformRandomProvider, LargeMeanPoissonSamplerState, double)}.
267     *
268     * @return the state
269     */
270    LargeMeanPoissonSamplerState getState() {
271        return new LargeMeanPoissonSamplerState(lambda, logLambda, logLambdaFactorial,
272                delta, halfDelta, twolpd, p1, p2, c1);
273    }
274
275    /**
276     * Encapsulate the state of the sampler. The state is valid for construction of
277     * a sampler in the range {@code lambda <= mean < lambda+1}.
278     *
279     * <p>This class is immutable.
280     *
281     * @see #getLambda()
282     */
283    static final class LargeMeanPoissonSamplerState {
284        /** Algorithm constant {@code lambda}. */
285        private final double lambda;
286        /** Algorithm constant {@code logLambda}. */
287        private final double logLambda;
288        /** Algorithm constant {@code logLambdaFactorial}. */
289        private final double logLambdaFactorial;
290        /** Algorithm constant {@code delta}. */
291        private final double delta;
292        /** Algorithm constant {@code halfDelta}. */
293        private final double halfDelta;
294        /** Algorithm constant {@code twolpd}. */
295        private final double twolpd;
296        /** Algorithm constant {@code p1}. */
297        private final double p1;
298        /** Algorithm constant {@code p2}. */
299        private final double p2;
300        /** Algorithm constant {@code c1}. */
301        private final double c1;
302
303        /**
304         * Creates the state.
305         *
306         * <p>The state is valid for construction of a sampler in the range
307         * {@code lambda <= mean < lambda+1} where {@code lambda} is an integer.
308         *
309         * @param lambda the lambda
310         * @param logLambda the log lambda
311         * @param logLambdaFactorial the log lambda factorial
312         * @param delta the delta
313         * @param halfDelta the half delta
314         * @param twolpd the two lambda plus delta
315         * @param p1 the p1 constant
316         * @param p2 the p2 constant
317         * @param c1 the c1 constant
318         */
319        private LargeMeanPoissonSamplerState(double lambda, double logLambda,
320                double logLambdaFactorial, double delta, double halfDelta, double twolpd,
321                double p1, double p2, double c1) {
322          this.lambda = lambda;
323          this.logLambda = logLambda;
324          this.logLambdaFactorial = logLambdaFactorial;
325          this.delta = delta;
326          this.halfDelta = halfDelta;
327          this.twolpd = twolpd;
328          this.p1 = p1;
329          this.p2 = p2;
330          this.c1 = c1;
331        }
332
333        /**
334         * Get the lambda value for the state.
335         *
336         * <p>Equal to {@code floor(mean)} for a Poisson sampler.
337         * @return the lambda value
338         */
339        int getLambda() {
340            return (int) getLambdaRaw();
341        }
342
343        /**
344         * @return algorithm constant {@code lambda}
345         */
346        double getLambdaRaw() {
347          return lambda;
348        }
349
350        /**
351         * @return algorithm constant {@code logLambda}
352         */
353        double getLogLambda() {
354          return logLambda;
355        }
356
357        /**
358         * @return algorithm constant {@code logLambdaFactorial}
359         */
360        double getLogLambdaFactorial() {
361          return logLambdaFactorial;
362        }
363
364        /**
365         * @return algorithm constant {@code delta}
366         */
367        double getDelta() {
368          return delta;
369        }
370
371        /**
372         * @return algorithm constant {@code halfDelta}
373         */
374        double getHalfDelta() {
375          return halfDelta;
376        }
377
378        /**
379         * @return algorithm constant {@code twolpd}
380         */
381        double getTwolpd() {
382          return twolpd;
383        }
384
385        /**
386         * @return algorithm constant {@code p1}
387         */
388        double getP1() {
389          return p1;
390        }
391
392        /**
393         * @return algorithm constant {@code p2}
394         */
395        double getP2() {
396          return p2;
397        }
398
399        /**
400         * @return algorithm constant {@code c1}
401         */
402        double getC1() {
403          return c1;
404        }
405    }
406}