001/* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017package org.apache.commons.rng.sampling.distribution; 018 019import org.apache.commons.rng.UniformRandomProvider; 020 021/** 022 * Sampler for the <a href="http://mathworld.wolfram.com/PoissonDistribution.html">Poisson distribution</a>. 023 * 024 * <ul> 025 * <li> 026 * For small means, a Poisson process is simulated using uniform deviates, as 027 * described <a href="http://mathaa.epfl.ch/cours/PMMI2001/interactive/rng7.htm">here</a>. 028 * The Poisson process (and hence, the returned value) is bounded by 1000 * mean. 029 * </li> 030 * <li> 031 * For large means, we use the rejection algorithm described in 032 * <blockquote> 033 * Devroye, Luc. (1981). <i>The Computer Generation of Poisson Random Variables</i><br> 034 * <strong>Computing</strong> vol. 26 pp. 197-207. 035 * </blockquote> 036 * </li> 037 * </ul> 038 * 039 * @since 1.0 040 */ 041public class PoissonSampler 042 extends SamplerBase 043 implements DiscreteSampler { 044 045 /** 046 * Value for switching sampling algorithm. 047 * 048 * <p>Package scope for the {@link PoissonSamplerCache}. 049 */ 050 static final double PIVOT = 40; 051 /** The internal Poisson sampler. */ 052 private final DiscreteSampler poissonSampler; 053 054 /** 055 * @param rng Generator of uniformly distributed random numbers. 056 * @param mean Mean. 057 * @throws IllegalArgumentException if {@code mean <= 0} or 058 * {@code mean >} {@link Integer#MAX_VALUE}. 059 */ 060 public PoissonSampler(UniformRandomProvider rng, 061 double mean) { 062 super(null); 063 064 // Delegate all work to specialised samplers. 065 // These should check the input arguments. 066 poissonSampler = mean < PIVOT ? 067 new SmallMeanPoissonSampler(rng, mean) : 068 new LargeMeanPoissonSampler(rng, mean); 069 } 070 071 /** {@inheritDoc} */ 072 @Override 073 public int sample() { 074 return poissonSampler.sample(); 075 } 076 077 /** {@inheritDoc} */ 078 @Override 079 public String toString() { 080 return poissonSampler.toString(); 081 } 082}