001/* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017package org.apache.commons.rng.sampling.distribution; 018 019import org.apache.commons.rng.UniformRandomProvider; 020 021/** 022 * Sampler for the <a href="http://mathworld.wolfram.com/PoissonDistribution.html">Poisson distribution</a>. 023 * 024 * <ul> 025 * <li> 026 * For small means, a Poisson process is simulated using uniform deviates, as 027 * described <a href="http://mathaa.epfl.ch/cours/PMMI2001/interactive/rng7.htm">here</a>. 028 * The Poisson process (and hence, the returned value) is bounded by 1000 * mean. 029 * </li> 030 * </ul> 031 * 032 * @since 1.1 033 * 034 * This sampler is suitable for {@code mean < 40}. 035 * For large means, {@link LargeMeanPoissonSampler} should be used instead. 036 */ 037public class SmallMeanPoissonSampler 038 implements DiscreteSampler { 039 /** Upper bound to avoid truncation. */ 040 private static final double MAX_MEAN = 0.5 * Integer.MAX_VALUE; 041 /** 042 * Pre-compute {@code Math.exp(-mean)}. 043 * Note: This is the probability of the Poisson sample {@code P(n=0)}. 044 */ 045 private final double p0; 046 /** Pre-compute {@code 1000 * mean} as the upper limit of the sample. */ 047 private final int limit; 048 /** Underlying source of randomness. */ 049 private final UniformRandomProvider rng; 050 051 /** 052 * @param rng Generator of uniformly distributed random numbers. 053 * @param mean Mean. 054 * @throws IllegalArgumentException if {@code mean <= 0}. 055 */ 056 public SmallMeanPoissonSampler(UniformRandomProvider rng, 057 double mean) { 058 this.rng = rng; 059 if (mean <= 0) { 060 throw new IllegalArgumentException(mean + " <= " + 0); 061 } 062 if (mean > MAX_MEAN) { 063 throw new IllegalArgumentException(mean + " > " + MAX_MEAN); 064 } 065 066 p0 = Math.exp(-mean); 067 // The returned sample is bounded by 1000 * mean or Integer.MAX_VALUE 068 limit = (int) Math.ceil(Math.min(1000 * mean, Integer.MAX_VALUE)); 069 } 070 071 /** {@inheritDoc} */ 072 @Override 073 public int sample() { 074 int n = 0; 075 double r = 1; 076 077 while (n < limit) { 078 r *= rng.nextDouble(); 079 if (r >= p0) { 080 n++; 081 } else { 082 break; 083 } 084 } 085 return n; 086 } 087 088 /** {@inheritDoc} */ 089 @Override 090 public String toString() { 091 return "Small Mean Poisson deviate [" + rng.toString() + "]"; 092 } 093}